Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm

Author(s): Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek H

Abstract

Purpose:To validate Bridge Burner, a new brain segmentation algorithm based on thresholding, connectivity, surface detection, and a new operator of constrained growing.

Materials and methods:T1-weighted MR images were selected at random from three previous neuroimaging studies to represent a spectrum of system manufacturers, pulse sequences, subject ages, genders, and neurological conditions. The ground truth consisted of brain masks generated manually by a consensus of expert observers. All cases were segmented using a common set of parameters.

Results:Bridge Burner segmentation errors were 3.4% +/- 1.3% (volume mismatch) and 0.34 +/- 0.17 mm (surface mismatch). The disagreement among experts was 3.8% +/- 2.0% (volume mismatch) and 0.48 +/- 0.49 mm (surface mismatch). The error obtained using the brain extraction tool (BET), a widely used brain segmentation program, was 8.3% +/- 9.1%. Bridge Burner brain masks are visually similar to the masks generated by human experts. Areas affected by signal intensity nonuniformity artifacts were occasionally undersegmented, and meninges and large sinuses were often falsely classified as the brain tissue. Segmentation of one MRI dataset takes seven seconds.

Conclusion:The new fully automatic algorithm appears to provide accurate brain segmentation from high-resolution T1-weighted MR images.

Similar Articles

Neuroplasticity and functional recovery in multiple sclerosis

Author(s): Tomassini V, Matthews PM, Thompson AJ, Fuglø D, Geurts JJ, et al.

Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI

Author(s): Chiaravalloti N, Hillary F, Ricker J, Christodoulou C, Kalnin A, et al.

Default network activity is a sensitive and specific biomarker of memory in multiple sclerosis

Author(s): Sumowski JF, Wylie GR, Leavitt VM, Chiaravalloti ND, Deluca J

Cortical motor reorganization after a single clinical attack of multiple sclerosis

Author(s): Pantano P, Iannetti GD, Caramia F, Mainero C, Di Legge S, et al.

An investigation of working memory rehearsal in multiple sclerosis using fMRI

Author(s): Hillary FG, Chiaravalloti N, Ricker JH, Steffener J, Bly BM, et al.

Magnetic resonance spectroscopy of memory and frontal brain region in early multiple sclerosis

Author(s): Staffen W, Zauner H, Mair A, Kutzelnigg A, Kapeller P, et al.

Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS

Author(s): Kirov II, Tal A, Babb JS, Herbert J, Gonen O

MR Spectroscopy INdicates Diffuse Multiple Sclerosis Activity During Remission

Author(s): Kirov II, Patil V, Babb JS, Rusenek H, Herbert J, et al.

Proton magnetic resonance spectroscopy in multiple sclerosis

Author(s): Sajja BR, Wolinsky JS, Narayana PA

Guidelines for using proton MR spectroscopy in multicenter clinical MS studies

Author(s): De Stefano N, Filippi M, Miller D, Pouwels PJ, Rovira a, et al.

Magnetic resonance spectroscopy markers of disease progression in multiple sclerosis

Author(s): Llufriu S, Kornak J, Ratiney H, Oh J, Brenneman D, et al.

The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis

Author(s): Lee M, Reddy H, Johansen-Berg H, Pendlebury S, Jenkinson M, et al.

fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis

Author(s): Mainero C, Caramia F, Pozzilli C, Pisani A, Pestalozza I, et al.

Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis

Author(s): Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, et al.

Reduced information processing speed as primummovens for cognitive decline in MS

Author(s): Van Schependom J, D’hooghe MB, Cleynhens K, D’hooge M, Haelewyck M-C, et al.

Relating axonal injury to functional recovery in MS

Author(s): Reddy H, Narayanan S, Matthews PM, Hoge RD, Pike GB, et al.

Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis

Author(s): Inglese M, Li BSY, Rusinek H, Babb JS, Grossman RI, et al.

Incorporating prior knowledge into image registration

Author(s): Ashburner J, Neelin P, Collins DL, Evans A, Friston K

MR spectroscopy indicates diffuse multiple sclerosis activity during remission

Author(s): Kirov II, Patil V, Babb JS, Rusinek H, Herbert J, et al.