Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability

Author(s): Reddy H, Narayanan S, Woolrich M, Mitsumori T, Arnold DL, et al.

Abstract

Previous work has demonstrated potentially adaptive cortical plasticity that increases with brain injury in patients with multiple sclerosis. However, animal studies showing use-dependent changes in motor cortex organization suggest that functional changes also may occur in response to disability. We therefore wished to test whether brain injury and disability lead to distinguishable patterns of activation with hand movement in patients with multiple sclerosis. By employing a passive as well as an active movement task, we also wished to test whether these changes were independent of voluntary recruitment and thus more likely to reflect true functional reorganization. Fourteen patients [Extended Disability Status Score (EDSS) 0-7.5] with relapsing-remitting multiple sclerosis were selected on the basis of pathology load and hand functional impairment for three study groups: group 1, low diffuse central brain injury (DCBI) as assessed from relative N-acetylaspartate concentration (a marker of axonal integrity) and normal hand function (n = 6); group 2, greater DCBI and normal hand function (n = 4); and group 3, greater DCBI and impaired hand function (n = 4). Functional MRI (fMRI) was used to map brain activation with a four-finger and both one-finger passive and active flexion-extension movement tasks for the three groups. Considering all the patients, we found increased activity in ipsilateral premotor and ipsilateral motor cortex (IMC) and in the ipsilateral inferior parietal lobule with increasing global disability (as assessed from the EDSS score). These changes appear to define true functional reorganization, as fMRI activations in IMC (r = 0.87, P < 0.001) and in the contralateral motor cortex (r = 0.67, P < 0.007) were highly correlated between active and passive single finger movements. We attempted to disambiguate any distinct effects of disability and brain injury by direct contrasts between patients differing predominantly in one or the other. To make these contrasts as powerful as possible, we used impairment of finger tapping as a measure of disability specific to the hand tested. A direct contrast of patients matched for DCBI, but differing in hand disability (group 3 - group 2) showed greater bilateral primary and secondary somatosensory cortex activation with greater disability alone. A contrast matched for hand disability, but differing in DCBI (group 2 - group 1) showed a different pattern of changes with relative ipsilateral premotor cortex and bilateral supplementary motor area activity. We conclude that the pattern of brain activity with finger movements changes both with increasing DCBI and with hand disability in patients with multiple sclerosis, and that these changes are distinct. Those related directly to disability may reflect responses to altered patterns of use. As injury- and disability-related activation changes are found even with passive finger movements, they may reflect true brain reorganization.

Similar Articles

Neuroplasticity and functional recovery in multiple sclerosis

Author(s): Tomassini V, Matthews PM, Thompson AJ, Fuglø D, Geurts JJ, et al.

Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI

Author(s): Chiaravalloti N, Hillary F, Ricker J, Christodoulou C, Kalnin A, et al.

Default network activity is a sensitive and specific biomarker of memory in multiple sclerosis

Author(s): Sumowski JF, Wylie GR, Leavitt VM, Chiaravalloti ND, Deluca J

Cortical motor reorganization after a single clinical attack of multiple sclerosis

Author(s): Pantano P, Iannetti GD, Caramia F, Mainero C, Di Legge S, et al.

An investigation of working memory rehearsal in multiple sclerosis using fMRI

Author(s): Hillary FG, Chiaravalloti N, Ricker JH, Steffener J, Bly BM, et al.

Magnetic resonance spectroscopy of memory and frontal brain region in early multiple sclerosis

Author(s): Staffen W, Zauner H, Mair A, Kutzelnigg A, Kapeller P, et al.

Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS

Author(s): Kirov II, Tal A, Babb JS, Herbert J, Gonen O

MR Spectroscopy INdicates Diffuse Multiple Sclerosis Activity During Remission

Author(s): Kirov II, Patil V, Babb JS, Rusenek H, Herbert J, et al.

Proton magnetic resonance spectroscopy in multiple sclerosis

Author(s): Sajja BR, Wolinsky JS, Narayana PA

Guidelines for using proton MR spectroscopy in multicenter clinical MS studies

Author(s): De Stefano N, Filippi M, Miller D, Pouwels PJ, Rovira a, et al.

Magnetic resonance spectroscopy markers of disease progression in multiple sclerosis

Author(s): Llufriu S, Kornak J, Ratiney H, Oh J, Brenneman D, et al.

The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis

Author(s): Lee M, Reddy H, Johansen-Berg H, Pendlebury S, Jenkinson M, et al.

fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis

Author(s): Mainero C, Caramia F, Pozzilli C, Pisani A, Pestalozza I, et al.

Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis

Author(s): Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, et al.

Reduced information processing speed as primummovens for cognitive decline in MS

Author(s): Van Schependom J, D’hooghe MB, Cleynhens K, D’hooge M, Haelewyck M-C, et al.

Relating axonal injury to functional recovery in MS

Author(s): Reddy H, Narayanan S, Matthews PM, Hoge RD, Pike GB, et al.

Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis

Author(s): Inglese M, Li BSY, Rusinek H, Babb JS, Grossman RI, et al.

Incorporating prior knowledge into image registration

Author(s): Ashburner J, Neelin P, Collins DL, Evans A, Friston K

Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm

Author(s): Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek H

MR spectroscopy indicates diffuse multiple sclerosis activity during remission

Author(s): Kirov II, Patil V, Babb JS, Rusinek H, Herbert J, et al.