Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin

Author(s): AdamoAM,Paez PM, Escobar Cabrera OE, Wolfson M, Franco PG, et al.


Twenty-one-day-old Wistar rats were fed a diet containing 0.6% cuprizone for 2 weeks. Studies carried out after withdrawal of cuprizone showed histological evidences of marked demyelination in the corpus callosum. Biochemical studies of isolated myelin showed a marked decrease in myelin proteins, phospholipids, and galactocerebrosides as well as a marked decrease in myelin yield. Treatment of these animals with a single intracranial injection of 350 ng of apotransferrin at the time of withdrawal of cuprizone induced a marked increase in myelin deposition resulting in a significantly improved remyelination, evaluated by histological, immunocytochemical, and biochemical parameters, in comparison to what was observed in spontaneous recovery. Immunocytochemical studies of cryotome sections to analyze developmental parameters of the oligodendroglial cell population at the time of termination of cuprizone and at different times thereafter showed that in the untreated animals, there was a marked increase in the number of NG2-BrdU-positive precursor cells together with a marked decrease in MBP expression at the peak of cuprizone-induced demyelination. As expected, the amount of precursor cells decreased markedly during spontaneous remyelination and was accompanied by an increase in MBP reactivity. In the apotransferrin-treated animals, these phenomena occurred much faster, and remyelination was much more efficient than in the untreated controls. The results of this study suggest that apotransferrin is a very active promyelinating agent which could be important for the treatment of certain demyelinating conditions.

Similar Articles

[Structure of the glial cells in the nervous system of parasitic and free-living flatworms]

Author(s): Biserova NM, Gordeev II, KornevaZhV, Sal'nikova MM

Neuropharmacology and behavior in planarians: translations to mammals

Author(s): Buttarelli FR, Pellicano C, Pontieri FE

Cocaine withdrawal in Planaria

Author(s): Raffa RB, Valdez JM

Learning induces long-term potentiation in the hippocampus

Author(s): Whitlock JR, Heynen AJ, Shuler MG, Bear MF