A method to predict breast cancer stage using Medicare claims

Author(s): Smith GL, Shih YC, Giordano SH, Smith BD, Buchholz TA

Abstract

Background: In epidemiologic studies, cancer stage is an important predictor of outcomes. However, cancer stage is typically unavailable in medical insurance claims datasets, thus limiting the usefulness of such data for epidemiologic studies. Therefore, we sought to develop an algorithm to predict cancer stage based on covariates available from claims-based data.

Methods: We identified a cohort of 77,306 women age >/= 66 years with stage I-IV breast cancer, using the Surveillence Epidemiology and End Results (SEER)-Medicare database. We formulated an algorithm to predict cancer stage using covariates (demographic, tumor, and treatment characteristics) obtained from claims. Logistic regression models derived prediction equations in a training set, and equations' test characteristics (sensitivity, specificity, positive predictive value (PPV), and negative predictive value [NPV]) were calculated in a validation set.

Results: Of the entire sample of women diagnosed with invasive breast cancer, 51% had stage I; 26% stage II; 11% stage III; and 4% stage IV disease. The equation predicting stage IV disease achieved sensitivity of 81%, specificity 89%, positive predictive value (PPV) 24%, and negative predictive value (NPV) 99%, while the equation distinguishing stage I/II from stage III disease achieved sensitivity 83%, specificity 78%, PPV 98%, and NPV 31%. Combined, the equations most accurately identified early stage disease and ascertained a sample in which 98% of patients were stage I or II.

Conclusions: A claims-based algorithm was utilized to predict breast cancer stage, and was particularly successful when used to identify early stage disease. These prediction equations may be applied in future studies of breast cancer patients, substantially improving the utility of claims-based studies in this group. This method may similarly be employed to develop algorithms permitting claims-based epidemiologic studies of patients with other cancers.

Similar Articles

Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting

Author(s): Suriamoorthy P, Zhang X, Hao G, Joly AG, Singh S, et al.

Toxic potential of materials at the nanolevel

Author(s): Nel A, Xia T, M├Ądler L, Li N

From nanotechnology to nanomedicine: applications to cancer research

Author(s): Seigneuric R, Markey L, Nuyten DS, Dubernet C, Evelo CT, et al.

Superparamagnetic iron oxide nanoparticle probes for molecular imaging

Author(s): Thorek DL, Chen AK, Czupryna J, Tsourkas A

Freeze-drying of nanoparticles: formulation, process and storage considerations

Author(s): Abdelwahed W, Degobert G, Stainmesse S, Fessi H

Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis

Author(s): Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, et al.

Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract

Author(s): Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M

Facile green synthesis of variable metallic gold nanoparticle using Padinagymnospora, a brown marine macroalga

Author(s): Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK

Gold nanoparticles: From nanomedicine to nanosensing

Author(s): Chen PC, Mwakwari SC, Oyelere AK

Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy

Author(s): Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, et al.

Biological applications of gold nanoparticles

Author(s): Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ

Gold nanoparticles for biology and medicine

Author(s): Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, et al.

Reperfusion induces myocardial apoptotic cell death

Author(s): Zhao ZQ, Nakamura M, Wang NP, Wilcox JN, Shearer S, et al.

Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals

Author(s): Aljandali A, Pollack H, Yeldandi A, Li Y, Weitzman SA, et al.

Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene

Author(s): Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, et al.

In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells

Author(s): Ciapetti G, Granchi D, Savarino L, Cenni E, Magrini E, et al.