Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene

Author(s): Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, et al.

Abstract

The mechanisms underlying the cytotoxic action of pure fullerene suspension (nano-C60) and water-soluble polyhydroxylated fullerene [C60(OH)n] were investigated. Crystal violet assay for cell viability demonstrated that nano-C60 was at least three orders of magnitude more toxic than C60(OH)n to mouse L929 fibrosarcoma, rat C6 glioma, and U251 human glioma cell lines. Flow cytometry analysis of cells stained with propidium iodide (PI), PI/annexin V-fluorescein isothiocyanate, or the redox-sensitive dye dihydrorhodamine revealed that nano-C60 caused rapid (observable after few hours), reactive oxygen species (ROS)-associated necrosis characterized by cell membrane damage without DNA fragmentation. In contrast, C60(OH)n caused delayed, ROS-independent cell death with characteristics of apoptosis, including DNA fragmentation and loss of cell membrane asymmetry in the absence of increased permeability. Accordingly, the antioxidant N-acetylcysteine protected the cell lines from nano-C60 toxicity, but not C60(OH)n toxicity, while the pan-caspase inhibitor z-VAD-fmk blocked C60(OH)n-induced apoptosis, but not nano-C60-mediated necrosis. Finally, C60(OH)n antagonized, while nano-C60 synergized with, the cytotoxic action of oxidative stress-inducing agents hydrogen peroxide and peroxynitrite donor 3-morpholinosydnonimine. Therefore, unlike polyhydroxylated C60 that exerts mainly antioxidant/cytoprotective and only mild ROS-independent pro-apoptotic activity, pure crystalline C60 seems to be endowed with strong pro-oxidant capacity responsible for the rapid necrotic cell death.

Similar Articles

Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting

Author(s): Suriamoorthy P, Zhang X, Hao G, Joly AG, Singh S, et al.

A method to predict breast cancer stage using Medicare claims

Author(s): Smith GL, Shih YC, Giordano SH, Smith BD, Buchholz TA

Toxic potential of materials at the nanolevel

Author(s): Nel A, Xia T, M├Ądler L, Li N

From nanotechnology to nanomedicine: applications to cancer research

Author(s): Seigneuric R, Markey L, Nuyten DS, Dubernet C, Evelo CT, et al.

Superparamagnetic iron oxide nanoparticle probes for molecular imaging

Author(s): Thorek DL, Chen AK, Czupryna J, Tsourkas A

Freeze-drying of nanoparticles: formulation, process and storage considerations

Author(s): Abdelwahed W, Degobert G, Stainmesse S, Fessi H

Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis

Author(s): Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, et al.

Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract

Author(s): Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M

Facile green synthesis of variable metallic gold nanoparticle using Padinagymnospora, a brown marine macroalga

Author(s): Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK

Gold nanoparticles: From nanomedicine to nanosensing

Author(s): Chen PC, Mwakwari SC, Oyelere AK

Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy

Author(s): Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, et al.

Biological applications of gold nanoparticles

Author(s): Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ

Gold nanoparticles for biology and medicine

Author(s): Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, et al.

Reperfusion induces myocardial apoptotic cell death

Author(s): Zhao ZQ, Nakamura M, Wang NP, Wilcox JN, Shearer S, et al.

Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals

Author(s): Aljandali A, Pollack H, Yeldandi A, Li Y, Weitzman SA, et al.

In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells

Author(s): Ciapetti G, Granchi D, Savarino L, Cenni E, Magrini E, et al.