Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation

Author(s): Gavrieli Y, Sherman Y, Ben-Sasson SA

Abstract

Programmed cell death (PCD) plays a key role in developmental biology and in maintenance of the steady state in continuously renewing tissues. Currently, its existence is inferred mainly from gel electrophoresis of a pooled DNA extract as PCD was shown to be associated with DNA fragmentation. Based on this observation, we describe here the development of a method for the in situ visualization of PCD at the single-cell level, while preserving tissue architecture. Conventional histological sections, pretreated with protease, were nick end labeled with biotinylated poly dU, introduced by terminal deoxy-transferase, and then stained using avidin-conjugated peroxidase. The reaction is specific, only nuclei located at positions where PCD is expected are stained. The initial screening includes: small and large intestine, epidermis, lymphoid tissues, ovary, and other organs. A detailed analysis revealed that the process is initiated at the nuclear periphery, it is relatively short (1-3 h from initiation to cell elimination) and that PCD appears in tissues in clusters. The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.

Similar Articles

Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting

Author(s): Suriamoorthy P, Zhang X, Hao G, Joly AG, Singh S, et al.

A method to predict breast cancer stage using Medicare claims

Author(s): Smith GL, Shih YC, Giordano SH, Smith BD, Buchholz TA

Toxic potential of materials at the nanolevel

Author(s): Nel A, Xia T, M├Ądler L, Li N

From nanotechnology to nanomedicine: applications to cancer research

Author(s): Seigneuric R, Markey L, Nuyten DS, Dubernet C, Evelo CT, et al.

Superparamagnetic iron oxide nanoparticle probes for molecular imaging

Author(s): Thorek DL, Chen AK, Czupryna J, Tsourkas A

Freeze-drying of nanoparticles: formulation, process and storage considerations

Author(s): Abdelwahed W, Degobert G, Stainmesse S, Fessi H

Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis

Author(s): Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, et al.

Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract

Author(s): Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M

Facile green synthesis of variable metallic gold nanoparticle using Padinagymnospora, a brown marine macroalga

Author(s): Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK

Gold nanoparticles: From nanomedicine to nanosensing

Author(s): Chen PC, Mwakwari SC, Oyelere AK

Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy

Author(s): Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, et al.

Biological applications of gold nanoparticles

Author(s): Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ

Gold nanoparticles for biology and medicine

Author(s): Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, et al.

Reperfusion induces myocardial apoptotic cell death

Author(s): Zhao ZQ, Nakamura M, Wang NP, Wilcox JN, Shearer S, et al.

Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals

Author(s): Aljandali A, Pollack H, Yeldandi A, Li Y, Weitzman SA, et al.

Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene

Author(s): Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, et al.

In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells

Author(s): Ciapetti G, Granchi D, Savarino L, Cenni E, Magrini E, et al.