Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach

Author(s): Kasthuri J, Kathiravan K, Rajendiran NJ



The anisotropic gold and spherical–quasi-spherical silver nanoparticles (NPs) were synthesized by reducing aqueous chloroauric acid (HAuCl4) and silver nitrate (AgNO3) solution with the extract of phyllanthin at room temperature. The rate of reduction of HAuCl4 is greater than the AgNO3 at constant amount of phyllanthin extract. The size and shape of the NPs can be controlled by varying the concentration of phyllanthin extract and thereby to tune their optical properties in the near-infrared region of the electromagnetic spectrum. The case of low concentration of extract with HAuCl4 offers slow reduction rate along with the aid of electron-donating group containing extract leads to formation of hexagonal- or triangular-shaped gold NPs. Transmission electron microscopy (TEM) analysis revealed that the shape changes on the gold NPs from hexagonal to spherical particles with increasing initial concentration of phyllanthin extract. The Fourier transform infrared spectroscopy and thermogravimetric analyses reveal that the interaction between NPs and phyllanthin extract. The cyclic voltammograms of silver and gold NPs confirms the conversion of higher oxidation state to zero oxidation state.

Graphical abstract

Anisotropic gold and silver nanoparticles were synthesized by a simple procedure using phyllanthin extract as reducing agent. The rate of bioreduction of AgNO3 is lower than the HAuCl4 at constant concentration of phyllanthin extract. The required size of the nanoparticles can be prepared by varying the concentration of phyllanthin with AgNO3 and HAuCl4.

Similar Articles

Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting

Author(s): Suriamoorthy P, Zhang X, Hao G, Joly AG, Singh S, et al.

A method to predict breast cancer stage using Medicare claims

Author(s): Smith GL, Shih YC, Giordano SH, Smith BD, Buchholz TA

Toxic potential of materials at the nanolevel

Author(s): Nel A, Xia T, Mädler L, Li N

From nanotechnology to nanomedicine: applications to cancer research

Author(s): Seigneuric R, Markey L, Nuyten DS, Dubernet C, Evelo CT, et al.

Superparamagnetic iron oxide nanoparticle probes for molecular imaging

Author(s): Thorek DL, Chen AK, Czupryna J, Tsourkas A

Freeze-drying of nanoparticles: formulation, process and storage considerations

Author(s): Abdelwahed W, Degobert G, Stainmesse S, Fessi H

Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis

Author(s): Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, et al.

Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract

Author(s): Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M

Facile green synthesis of variable metallic gold nanoparticle using Padinagymnospora, a brown marine macroalga

Author(s): Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK

Gold nanoparticles: From nanomedicine to nanosensing

Author(s): Chen PC, Mwakwari SC, Oyelere AK

Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy

Author(s): Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, et al.

Biological applications of gold nanoparticles

Author(s): Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ

Gold nanoparticles for biology and medicine

Author(s): Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, et al.

Reperfusion induces myocardial apoptotic cell death

Author(s): Zhao ZQ, Nakamura M, Wang NP, Wilcox JN, Shearer S, et al.

Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals

Author(s): Aljandali A, Pollack H, Yeldandi A, Li Y, Weitzman SA, et al.

Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene

Author(s): Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, et al.

In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells

Author(s): Ciapetti G, Granchi D, Savarino L, Cenni E, Magrini E, et al.