Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat

Author(s): Ricardo JA, Koh ET

Abstract

Ascending projections from the caudal (general-visceroceptive) part of the nucleus of the solitary tract (NTS) were studied experimentally in the rat by the aid of the anterograde autoradiographic and the retrograde horseradish peroxidase (HRP) tracer techniques. Microelectrophoretic deposits of tritiated proline and leucine which involved the caudal part of the NTS, the dorsal motor nucleus of the vagus (dmX), and portions of the hypoglossal nucleus, nucleus intercalatus and/or nucleus gracilis were found to label ascending fibers that, besides going to numerous brain stem territories that included prominently the parabrachial area, could also be traced to serveral forebrain structures, namely, the bed nucleus of the stria terminalis (BST), the paraventricular (PA), dorsomedial (HDM) and arcuate (ARC) nuclei of the hypothalamus, the central nucleus of the amygdaloid complex (AC), the medial preoptic area (PM) and the periventricular nucleus of the thalamus (TPV). Smaller isotope injections almost completely confined to the NTS and dmX resulted in lighter labeling of a similar set of parabrachial and forebrain projections, whereas in another case, in which the deposit was almost exclusively limited to the nucleus gracilis, no label was seen in the aforementioned structures. In another series of experiments, aimed at further localizing the neurons of origin of the prosencephalic projections under consideration, small microelectrophoretic HRP injections confined almost totally to BST, PA, HDM, AC, PM or TPV, as well as both small and large injections involving ARC, resulted in labeled neurons situated in the dorsal medullary region, mainly in the medial portion of the NTS at the level of and caudal to the area postrema. Taken together, these observations indicate for the first time the existence of relatively direct conduction lines by which interoceptive information might be conveyed to limbic forebrain structures; some of the possible physiological correlates of these anatomical findings are discussed.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS