APACHE II: a severity of disease classification system

Author(s): Knaus WA, Draper EA, Wagner DP, Zimmerman JE

Abstract

This paper presents the form and validation results of APACHE II, a severity of disease classification system. APACHE II uses a point score based upon initial values of 12 routine physiologic measurements, age, and previous health status to provide a general measure of severity of disease. An increasing score (range 0 to 71) was closely correlated with the subsequent risk of hospital death for 5815 intensive care admissions from 13 hospitals. This relationship was also found for many common diseases. When APACHE II scores are combined with an accurate description of disease, they can prognostically stratify acutely ill patients and assist investigators comparing the success of new or differing forms of therapy. This scoring index can be used to evaluate the use of hospital resources and compare the efficacy of intensive care in different hospitals or over time.

Similar Articles

Outcome after brain haemorrhage

Author(s): Dennis MS

Molecular signatures of brain injury after intracerebral hemorrhage

Author(s): Castillo J, Davalos A, Alvarez-Sabin J, Pumar JM, Leira R, et al.

Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage

Author(s): Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, et al.

Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors

Author(s): Leira R, Davalos A, Silva Y, Gil-Peralta A, Tejada J

Headache in cerebral hemorrhage is associated with inflammatory markers and higher residual cavity

Author(s): Leira R, Castellanos M, Alvarez-Sabin J, Diez-Tejedor E, Davalos A, et al.

Predictors of good outcome in medium to large spontaneous supratentorial intracerebral haemorrhages

Author(s): Castellanos M, Leira R, Tejada J, Gil-Peralta A, Davalos A, et al.

C-reactive protein (CRP) in cerebro-vascular events

Author(s): Canova CR, Courtin C, Reinhart WH

Recommendations for the management of intracranial haemorrhage - part I: spontaneous intracerebral haemorrhage

Author(s): Steiner T, Kaste M, Forsting M, Mendelow D, Kwiecinski H, et al.

The ICH score: a simple, reliable grading scale for intracerebral hemorrhage

Author(s): Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC

The ABCs of measuring intracerebral hemorrhage volumes

Author(s): Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, et al.

Computed tomographic diagnosis of intraventricular hemorrhage

Author(s): Graeb DA, Robertson WD, Lapointe JS, Nugent RA, Harrison PB

Hyperglycemia and Short-term Outcome in Patients with Spontaneous Intracerebral Hemorrhage

Author(s): Godoy DA, Pinero GR, Svampa S, Papa F, Di Napoli M

Leukocytes and primary intracerebral hemorrhage

Author(s): Bestue-Cardiel M, Martin-Martinez J, Iturriaga-Heras C, Ara-Callizo JR, Oliveros-Juste A

Acute leukocyte and temperature response in hypertensive intracerebral hemorrhage

Author(s): Suzuki S, Kelley RE, Dandapani BK, Reyes-Iglesias Y, Dietrich WD, et al.

Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases

Author(s): Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, et al.

Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage

Author(s): Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, et al.

Absence of early proinflammatory cytokine expression in experimental intracerebral hemorrhage

Author(s): Qureshi AI, Suri MF, Ling GS, Khan J, Guterman LR, et al.