(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Abstract

By indirect immunohistochemistry, the present study examined the distribution of neuronal structures in the cat medulla oblongata, pons, and midbrain, showing immunoreactivity to aromatic L-amino acid decarboxylase (AADC), which catalyzes the conversion of L-3, 4-dihydroxyphenylalanine (L-DOPA) to dopamine, and 5-hydroxytryptophan to serotonin (5HT). With simultaneous and serial double immunostaining techniques, immunoreactivity to this enzyme was demonstrated in most of the catecholaminergic and serotonergic neurons. We could also demonstrate AADC-IR cell bodies that do not contain tyrosine hydroxylase (TH-) or 5HT-immunoreactivity (called "D-type cells") outside such monoaminergic cell systems. At the medullo-spinal junction, very small D-type cells were found within and beneath the ependymal layer of the 10th area of Rexed surrounding the central canal. D-type cells were localized in the caudal reticular formation, nucleus of the solitary tract, a dorsal aspect of the lateral parabrachial nucleus, and pretectal areas as have been reported in the rat. Furthermore, the present study describes, in the cat brainstem, new additional D-type cell groups that have not been reported in the rat. Dense or loose clusters of D-type cells were localized in the external edge of the laminar trigeminal nucleus, dorsal motor nucleus of the vagus, external cuneate nucleus, nucleus praepositus hypoglossi, central, pontine, and periaqueductal gray, superficial layer of the superior colliculus, and area medial to the retroflexus. D-type cells were loosely clustered in the lateral part of the central tegmental field dorsal to the substantia nigra, extending dorsally in the medial division of the posterior complex of the thalamus and medial side of the brachium of the inferior colliculus. They extended farther rostrodorsally along the medial side of the nucleus limitans and joined with the pretectal cell group. Almost all these cells were very small and ovoid to round with 1-2 short processes with the exception of dorsal motor vagal cells. AADC-IR axons were clearly identified in the vagal efferent nerves, longitudinal medullary pathway, dorsal tegmental bundle rostral to the locus coeruleus. Serotonergic axons were identified not only in the central tegmentum field and lateral side of the central superior nucleus, but also in the ventral surface of the medulla oblongata. We describe principal densely stained fiber plexuses in the cat brainstem. The findings of the present study provide a morphological basis for neurons that decarboxylate endogenous and exogenous L-DOPA, 5HTP, and other aromatic L-amino acids.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS