Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage

Author(s): Yamaguchi-Okada M, Nishizawa S, Koide M, Nonaka Y


Because it has been argued that active myogenic tone prolongs cerebral vasospasm for >2 wk after subarachnoid hemorrhage (SAH), we attempted to identify the mechanism that plays the main role in sustaining the prolonged cerebral vasospasm. We especially focused on the roles of biomechanical and phenotypic changes in the cerebral arteries in the mechanisms of prolonged vasospasm after SAH. We used the basilar arteries from a "two-hemorrhage" canine model to make serial measurements of maximal contraction capacity and arterial stiffness (papaverine-insensitive tone) until day 28. We also examined hematoxylin-eosin-stained vasospastic canine basilar arteries for histological changes and immunohistochemically examined them for expression of myosin heavy chain isoforms (SMemb, SM1, and SM2), which are markers of smooth muscle phenotypic changes. Changes in collagen concentration in canine basilar arteries were also measured. Angiographic cerebral vasospasm persisted until day 14 and then gradually diminished; artery diameter returned to the control diameters on day 28. Maximal contraction capacity decreased until day 21 and showed some recovery by day 28. Arterial stiffness, on the other hand, progressed until day 28. Histological examination revealed medial thickening and increased connective tissue until day 21 and a return to control findings by day 28. The increased connective tissue was not accompanied by changes in collagen concentration, suggesting a role of some other protein in the increase in connective tissue. Immunohistochemical studies with anti-SMemb, anti-SM1, and anti-SM2 antibodies showed enhanced expression of SMemb from day 7 to day 21 and disappearance of SM1 and SM2 on days 14 and 21. The changes in myosin heavy chain isoform expression returned to normal on day 28. The above results indicate that biomechanical and phenotypic changes may play a pivotal role in sustaining cerebral vasospasm for >2 wk after SAH, with minimal changes in active myogenic arterial tone.

Similar Articles

Cerebral vasospasm following aneurysmal subarachnoid hemorrhage

Author(s): Kassell NF, Sasaki T, Colohan AR, Nazar G

Altered patterns of gene expression in response to myocardial infarction

Author(s): Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, et al.

Genomics of human intracranial aneurysm wall

Author(s): Shi C, Awad IA, Jafari N, Lin S, Du P, et al.

Bioconductor: open software development for computational biology and bioinformatics

Author(s): Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al.

TM4 microarray software suite

Author(s): Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al.

Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats

Author(s): Suzuki H, Kanamaru K, Tsunoda H, Inada H, Kuroki M, et al.

Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat

Author(s): Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L

Gene expression in a canine basilar artery vasospasm model: a genome-wide network-based analysis

Author(s): Sasahara A, Kasuya H, Krischek B, Tajima A, Onda H, et al.

Global quantification of mammalian gene expression control

Author(s): Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al.

Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage

Author(s): Borel CO, McKee A, Parra A, Haglund MM, Solan A, et al.

Oxidative stress activates STAT1 in basilar arteries after subarachnoid hemorrhage

Author(s): Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Wakabayashi T, et al.

Cerebral artery spasm

Author(s): Hughes JT, Schianchi PM

Stroke: anatomy of a catastrophic event

Author(s): Zhang J, Lewis A, Bernanke D, Zubkov A, Clower B

Neuroprotection by osteopontin in stroke

Author(s): Meller R, Stevens SL, Minami M, Cameron JA, King S, et al.

Expression, roles, receptors, and regulation of osteopontin in the kidney

Author(s): Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, et al.

Apoptosis of endothelial cells in vessels affected by cerebral vasospasm

Author(s): Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J

Morphological changes of cerebral arteries in a canine double hemorrhage model

Author(s): Zubkov AY, Tibbs RE, Clower B, Ogihara K, Aoki K, et al.

Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Yamashita M, Fujiwara S, Zuccarello M

Barrier disruption in the major cerebral arteries during the acute stage after experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Zuccarello M, Nakagomi T, Fijiwara S, et al.

Immune complexes and complement activation following rupture of intracranial saccular aneurysms

Author(s): Ostergaard JR, Kristensen BO, Svehag SE, Teisner B, Miletic T