Cellular phenotyping of secretory and nuclear prion proteins associated with inherited prion diseases

Author(s): Lorenz H, Windl O, Kretzschmar HA

Abstract

The pathogenic mechanisms leading from mutations in the prion protein (PrP) gene to infectious disease are not understood. To investigate the possibility that cellular processing of mutant prion protein may contribute to the formation of infectious particles, a mouse PrP model system has been established using the green fluorescent protein. Three novel PrP mutants were examined employing this model system and compared with wild type as well as known mutant PrPs. Two Creutzfeldt-Jakob disease-associated PrP mutants, PrP T188K and PrP T188R, revealed a secretory pathway to the cell membrane and PrP(Sc)-like properties, i.e. enhanced proteinase K resistance and detergent insolubility similar to other mutant PrPs associated with familial prion diseases. Moreover, a recently described disease-related truncated PrP mutant, PrP Q160(Stop), showed an almost exclusive localization in the nucleus and a catabolism along the proteasomal pathway. Therefore, various distinct pathological mechanisms may cause prion diseases, and aberrant cellular processing may be included in the pathogenesis of prion diseases.

Similar Articles

Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells

Author(s): Lee KS, Magalhães AC, Zanata SM, Brentani RR, Martins VR, et al.

Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein

Author(s): Magalhães AC, Silva JA, Lee KS, Martins VR, Prado VF, et al.

Mutant prion proteins are partially retained in the endoplasmic reticulum

Author(s): Ivanova L, Barmada S, Kummer T, Harris DA

Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins

Author(s): Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, et al.

Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein

Author(s): Hachiya NS, Watanabe K, Yamada M, Sakasegawa Y, Kaneko K

Prion protein is necessary for normal synaptic function

Author(s): Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, et al.

The cellular prion protein binds copper in vivo

Author(s): Brown DR, Qin K, Herms JW, Madlung A, Manson J, et al.

Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles

Author(s): Peretti D, Peris L, Rosso S, Quiroga S, Cáceres A

Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites

Author(s): Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, et al.

Molecular motors: strategies to get along

Author(s): Mallik R, Gross SP

Movement of microtubules by single kinesin molecules

Author(s): Howard J, Hudspeth AJ, Vale RD