Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform

Author(s): Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, et al.


After the cellular prion protein (PrPC) transits to the cell surface where it is bound by a glycophosphatidyl inositol (GPI) anchor, PrPC is either metabolized or converted into the scrapie isoform (PrPSc). Because most GPI-anchored proteins are associated with cholesterol-rich membranous microdomains, we asked whether such structures participate in the metabolism of PrPC or the formation of PrPSc. The initial degradation of PrPC involves removal of the NH2 terminus of PrPC to produce a 17-kD polypeptide which was found in a Triton X-100 insoluble fraction. Both the formation of PrPSc and the initial degradation of PrPC were diminished by lovastatin-mediated depletion of cellular cholesterol but were insensitive to NH4Cl. Further degradation of the 17-kD polypeptide did occur within an NH4Cl-sensitive, acidic compartment. Replacing the GPI addition signal with the transmembrane and cytoplasmic domains of mouse CD4 rendered chimeric CD4PrPC soluble in cold Triton X-100. Both CD4PrPC and truncated PrPC without the GPI addition signal (Rogers, M., F. Yehieley, M. Scott, and S. B. Prusiner. 1993. Proc. Natl. Acad. Sci. USA. 90:3182-3186) were poor substrates for PrPSc formation. Thus, it seems likely that both the initial degradation of PrPC to the 17-kD polypeptide and the formation of PrPSc occur within a non-acidic compartment bound by cholesterol-rich membranes, possibly glycolipid-rich microdomains, where the metabolic fate of PrPC is determined. The pathway remains to be identified by which the 17-kD polypeptide and PrPSc are transported to an acidic compartment, presumably endosomes, where the 17-kD polypeptide is hydrolyzed and limited proteolysis of PrPSc produces PrP 27-30.

Similar Articles

Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells

Author(s): Lee KS, Magalhães AC, Zanata SM, Brentani RR, Martins VR, et al.

Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein

Author(s): Magalhães AC, Silva JA, Lee KS, Martins VR, Prado VF, et al.

Mutant prion proteins are partially retained in the endoplasmic reticulum

Author(s): Ivanova L, Barmada S, Kummer T, Harris DA

Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins

Author(s): Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, et al.

Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein

Author(s): Hachiya NS, Watanabe K, Yamada M, Sakasegawa Y, Kaneko K

Prion protein is necessary for normal synaptic function

Author(s): Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, et al.

The cellular prion protein binds copper in vivo

Author(s): Brown DR, Qin K, Herms JW, Madlung A, Manson J, et al.

Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles

Author(s): Peretti D, Peris L, Rosso S, Quiroga S, Cáceres A

Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites

Author(s): Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, et al.

Molecular motors: strategies to get along

Author(s): Mallik R, Gross SP

Movement of microtubules by single kinesin molecules

Author(s): Howard J, Hudspeth AJ, Vale RD