Contribution of  inflammatory processes to Alzheimer's disease: molecular mechanisms

Author(s): Sastre M, Klockgether T, Heneka MT

Abstract

There is compelling evidence that Alzheimer's disease (AD) amyloid-beta (Abeta) deposition is associated with a local inflammatory response, which is initiated by the activation of microglia and the recruitment of astrocytes. These cells secrete a number of cytokines and neurotoxic products that may contribute to neuronal degeneration and cell death. It has been documented that long-term intake of non-steroidal anti-inflammatory drugs (NSAIDs) decrease the risk for developing AD and delay the onset of the disease. The mechanism behind these NSAIDs is still controversial and several hypotheses have been raised, including changes in the amyloid precursor protein (APP) metabolism, in Abeta aggregation and a decrease in inflammatory mediators. Recently, it was proposed that some NSAIDs might activate the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). PPAR-gamma belongs to a family of nuclear receptors that are able to regulate the transcription of pro-inflammatory molecules, such as iNOS. The activation of PPAR-gamma has been recently reported to reduce Abeta levels in cell culture and AD animal models. The implication of PPAR-gamma in the control of Abeta-induced inflammation suggests a new target for AD therapy and emphasize the contribution of neuroinflammatory mechanisms to the pathogenesis of AD.

Similar Articles

Alzheimer's  disease: the challenge of the second century

Author(s): Holtzman DM, Morris JC, Goate AM

Epidemiology of  Alzheimer disease

Author(s): Reitz C, Brayne C, Mayeux R

Trafficking regulation of proteins in Alzheimer's disease

Author(s): Jiang S, Li Y, Zhang X, Bu G, Xu H, et al.

Trafficking and proteolytic processing of APP

Author(s): Haass C, Kaether C, Thinakaran G, Sisodia S

Efficient inhibition of the Alzheimer's disease  beta-secretase by membrane targeting

Author(s): Rajendran L, Schneider A, Schlechtingen G, Weidlich S,  Ries J, et al.

Crystal structure of an active form of BACE1, an enzyme responsible for  amyloid beta protein production

Author(s): Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, et al. 

Aβ-degrading enzymes: potential for treatment of Alzheimer disease

Author(s): Miners JS, Barua N, Kehoe PG, Gill S, Love S

Nonsteroidal anti-inflammatory drugs repress beta-secretase gene  promoter activity by the activation of PPARgamma

Author(s): Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E,  et al.

Cholesterol reduction impairs exocytosis of synaptic vesicles

Author(s): Linetti A, Fratangeli A, Taverna E, Valnegri P, Francolini  M, et al.

Critical time window of neuronal cholesterol  synthesis during neurite outgrowth

Author(s): Fünfschilling U, Jockusch WJ, Sivakumar N, Möbius W,  Corthals K, et al.

Cholesterol  homeostasis in neurons and glial cells

Author(s): Vance JE, Hayashi H, Karten B

Lipoproteins and their receptors in the central nervous system

Author(s): Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH