Critical time window of neuronal cholesterol  synthesis during neurite outgrowth

Author(s): Fünfschilling U, Jockusch WJ, Sivakumar N, Möbius W,  Corthals K, et al.


Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.

Similar Articles

Alzheimer's  disease: the challenge of the second century

Author(s): Holtzman DM, Morris JC, Goate AM

Epidemiology of  Alzheimer disease

Author(s): Reitz C, Brayne C, Mayeux R

Trafficking regulation of proteins in Alzheimer's disease

Author(s): Jiang S, Li Y, Zhang X, Bu G, Xu H, et al.

Trafficking and proteolytic processing of APP

Author(s): Haass C, Kaether C, Thinakaran G, Sisodia S

Efficient inhibition of the Alzheimer's disease  beta-secretase by membrane targeting

Author(s): Rajendran L, Schneider A, Schlechtingen G, Weidlich S,  Ries J, et al.

Crystal structure of an active form of BACE1, an enzyme responsible for  amyloid beta protein production

Author(s): Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, et al. 

Aβ-degrading enzymes: potential for treatment of Alzheimer disease

Author(s): Miners JS, Barua N, Kehoe PG, Gill S, Love S

Nonsteroidal anti-inflammatory drugs repress beta-secretase gene  promoter activity by the activation of PPARgamma

Author(s): Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E,  et al.

Cholesterol reduction impairs exocytosis of synaptic vesicles

Author(s): Linetti A, Fratangeli A, Taverna E, Valnegri P, Francolini  M, et al.

Cholesterol  homeostasis in neurons and glial cells

Author(s): Vance JE, Hayashi H, Karten B

Lipoproteins and their receptors in the central nervous system

Author(s): Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH