Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM


In vivo and in vitro activity of tyrosine hydroxylase (TH) was estimated in the catecholaminergic A2 cell group of the nucleus tractus solitarius (NTS) in rats exposed to normobaric hypoxia (10% O2 in nitrogen) for 2 h, 3, 7, 14 or 21 days. The A2 cell group was subdivided into two subgroups. In the caudal A2 subgroup located caudal to the calamus scriptorius, long-term but not acute hypoxia elicited an increase of in vivo tyrosine hydroxylation rate after 7 days of exposure (+60% above normoxic controls). The increase of in vivo TH activity was maintained at the same level at the end of hypoxic exposure. In vitro TH activity was increased transiently after 7 days of hypoxia (+92% above normoxic (controls). In thr rostral A2 subgroup, hypoxia elicited a significant increase of in vivo tyrosine hydroxylation at 7 days (+38%) but did not alter in vitro TH activity throughout the whole exposure. Hypoxia produced no detectable change in TH activity in other noradrenergic cell groups of the brain stem (locus coeruleus, A5) except for a transient inhibition of in vivo TH activity in A5 after 2 h. Immunocytochemical analyses confirmed that the catecholaminergic neurons in the caudal A2 area are not only of a noradrenergic nature. The neurons were located in the commissural subnucleus of the NTS. On the other hand, the rostral A2 area contains noradrenergic neurons intermingled with a small number of adrenergic cell bodies.(ABSTRACT TRUNCATED AT 250 WORDS)

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS