Distribution of catecholaminergic neuronal systems in the canine medulla oblongata and pons

Author(s): Barnes KL, Chernicky CL, Block CH, Ferrario CM


The distribution of catecholamine-containing neurons, fibers, and varicosities in the brainstem of both adult and juvenile dogs was mapped in detail with glyoxylic acid histofluorescence. Four separate groups of catecholamine-fluorescent neurons were identified within the canine medulla and pons in locations comparable to the A1, A2, A5, and A6 regions reported in other species. However, aspects of the pattern and density of the catecholaminergic neuronal systems appeared to be unique to the dog. The A1 neurons of the caudal ventrolateral medulla were much more scattered than in rats or rabbits, but relatively similar to cats. In the A2 region of the dorsomedial medulla, catecholaminergic cells and fibers were uniquely distributed compared to other species: fluorescent neurons were scattered only within the dorsal motor nucleus of the vagus, and a distinctive pattern of fibers and varicosities outlined the nucleus of the solitary tract and dorsal motor nucleus of the vagus. The A5 neurons of the rostral ventrolateral medulla appeared at the rostral limit of the A1 region. Fluorescent A5 cells were more sparse than in rats or primates, and were patterned similarly to cats and rabbits. The canine A6 region contained the most extensive and dense grouping of catecholamine neurons and was similar in pattern to the rabbits but less extensive than that seen in cats or primates. An ascending catecholaminergic fiber pathway was traced through the central tegmental field of the canine medulla and pons, with features similar to the primate. The present study provides the first description of the catecholaminergic neuronal systems of the canine medulla.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS