Effect of catecholamine-receptor stimulating agents on blood pressure after local application in the nucleus tractussolitarii of the medulla oblongata

Author(s): Zandberg P, De Jong W, De Wied D

Abstract

The effect of various catecholamines and alpha-mimetics, given by microinjection in the A2-region of the nucleus tractus solitarii (NTS), on blood pressure was investigated in anesthetized male rats. A dose-dependent decrease of blood pressure and heart rate was induced by adrenaline as the most effective drug, followed by noradrenaline, dopamine, alpha-methylnoradrenaline and octopamine. Ablation of the rostral or caudal part of the NTS, or removal of the area postrema did not diminish the effect of alpha-methylnoradrenaline. Higher doses of noradrenaline and alpha-methylnoradrenaline caused an initial rise of blood pressure, while the blood pressure lowering effect of noradrenaline was diminished, and that of alpha-methylnoradrenaline and dopamine delayed. Isoprenaline and the (+)-stereoisomers of noradrenaline and alpha-methylnoradrenaline were ineffective. The hypotensive effect of dopamine was not prevented by systemic injection of the dopamine beta-hydroxylase inhibitor FLA 63. Prior application of haloperidol, yohimbine and phentolamine antagonized the hypotensive response to dopamine and alpha-methylnoradrenaline. Application of peripherally effective alpha-mimetics into the A2-region had no or little effect, while high doses increased blood pressure. Tyramine and clonidine caused some decrease of blood pressure. Clonidine also decreased blood pressure when it was applied in the area of the locus coeruleus. Application of isoprenaline in the locus coeruleus also decreased blood pressure while in contrast adrenaline, noradrenaline, dopamine and alpha-methylnoradrenaline increased blood pressure. The present data suggest that the catecholaminergic receptors in the A2-region of the NTS differ from the classic vascular alpha-receptor and that the NTS also may contain structures which can antagonize the decrease in blood pressure.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS