Effects of monoamine oxidase inhibition on catecholamine levels: evidence for synthesis but not storage of epinephrine in rat spinal cord

Author(s): Sved AF


Epinephrine levels in the intermediolateral cell group in the rat spinal cord are very low, although there is a dense projection to this region from cells containing all the enzymes required for epinephrine biosynthesis. One explanation for this finding is that epinephrine in the nerve terminals is degraded as soon as it is synthesized, so that no epinephrine is actually stored in synaptic vesicles. To test this hypothesis, epinephrine levels were measured in spinal cord of rats pretreated with an inhibitor of monoamine oxidase, the major enzyme involved in epinephrine degradation. Selected other tissues (i.e. brainstem, hypothalamus, adrenal gland, superior cervical ganglion) were examined for comparison. Pargyline treatment (75 mg/kg i.p., 4 h prior to sacrifice) increased catecholamine levels in spinal cord, hypothalamus, and brainstem. However, the percent increase in epinephrine in the spinal cord and brainstem was much larger than that for dopamine and norepinephrine in the 3 central nervous system regions studied, as well as larger than that for epinephrine in the hypothalamus. These results suggest that phenylethanolamine N-methyltransferase (PNMT)-containing terminals in the rat spinal cord can synthesize epinephrine, but that little if any epinephrine is stored in synaptic vesicles due to the rapid metabolism of cytoplasmic catecholamines by monoamine oxidase. In contrast, pargyline pretreatment had no effect on catechol levels in the adrenal gland, suggesting that little metabolism of catecholamines takes place in those epinephrine-synthesizing cells. Furthermore, since pargyline pretreatment increased norepinephrine levels but decreased dopamine levels in the superior cervical ganglion, it is suggested that most of the dopamine in that sympathetic ganglion is present as a precursor to norepinephrine in noradrenergic postganglionic sympathetic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS