Electrocardiographic changes at the onset of epileptic seizures

Author(s): Leutmezer F, Schernthaner C, Lurger S, Pötzelberger K, Baumgartner C

Abstract

Purpose:We studied heart-rate (HR) changes at the transition from the preictal to the ictal state in patients with focal epilepsies to gain some insight into the mechanisms involved in the neuronal regulation of cardiovascular function.

Methods:We assessed ECG changes during 145 seizures recorded with scalp EEG in 58 patients who underwent video-EEG monitoring. Consecutive RR intervals were analyzed with a newly developed mathematical method for a total of 90 s.

Results:Ictal-onset tachycardia occurred in 86.9% of all seizures, whereas bradycardia was documented only in 1.4%. The incidence as well as the amount of ictal HR increase was significantly more pronounced in patients with mesial temporal lobe epilepsy (TLE) as compared with those with non-lesional TLE or extratemporal epilepsy. Moreover, right hemispheric seizures were associated with ictal-onset tachycardia. On average, ictal HR increase preceded EEG seizure onset by 13.7 s in TLE patients and 8.2 s in patients with extratemporal epilepsy. This difference was significant. Ictal HR changes could be classified according to their temporal evolution into two different patterns. These two patterns differed significantly between the temporal lobe and the extratemporal epilepsy patient group.

Conclusions:Epileptic discharges directly influence areas of the central autonomic network, thus regulating HR and rhythm. Such changes occur before ictal discharges appear on surface electrodes. Our newly developed method may be of potential use for clinical applications such as automatic seizure-detection systems. Moreover, our method might help to clarify further the basic mechanisms of interactions between heart and brain.

Similar Articles

Heart rate variability during interictalepileptiform discharges

Author(s): Zaatreh MM, Quint SR, Tennison MB, D’Cruz O, Vaughn BB.

Detection of epileptic-seizures by means of power spectrum analysis of heart rate variability: a pilot study

Author(s): Jeppesen J, Beniczky S, Fuglsang-Frederiksen A, Sidenius P, Jasemian Y

Quantitative analysis of heart rate variability in patients with absence epilepsy

Author(s): Pradhan C, Sinha S, Thennarasu K, Jagadisha T

Pre-ictal heart rate variability assessment of epileptic seizures by means of linear and non-linear analyses

Author(s): Behbahani S, Dabanloo NJ, Nasrabadi AM, Teizeira CA, Dourado A

Psychogenic non-epileptic seizures--Diagnostic issues: A critical review

Author(s): Bodde NM, Brooks JL, Baker GA, Boon PA, Hendriksen JG, et al.

Assessment of autonomic function in humans by heart rate spectral analysis

Author(s): Pomeranz M, Macaulay RJB, Caudill MA, Kutz I, Adam D et al.

Cardiovascular neural regulation explored in the frequency domain

Author(s): Malliani A, Pagani M, Lombardi F, Cerutti S

Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs

Author(s): Rimoldi O, Pierini S, Ferrari A, Cerutti S, Pagani M, et al.

Quantitative beat-to-beat analysis of heart rate dynamics during exercise

Author(s): Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV

Activity-responsive pacing produces long-term heart rate variability

Author(s): Raj SR, Roach DE, Koshman ML, Sheldon RS