Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein

Author(s): Magalhães AC, Silva JA, Lee KS, Martins VR, Prado VF, et al.

Abstract

We have investigated the intracellular traffic of PrP(c), a glycosylphosphatidylinositol (GPI)-anchored protein implicated in spongiform encephalopathies. A fluorescent functional green fluorescent protein (GFP)-tagged version of PrP(c) is found at the cell surface and in intracellular compartments in SN56 cells. Confocal microscopy and organelle-specific markers suggest that the protein is found in both the Golgi and the recycling endosomal compartment. Perturbation of endocytosis with a dynamin I-K44A dominant-negative mutant altered the steady-state distribution of the GFP-PrP(c), leading to the accumulation of fluorescence in unfissioned endocytic intermediates. These pre-endocytic intermediates did not seem to accumulate GFP-GPI, a minimum GPI-anchored protein, suggesting that PrP(c) trafficking does not depend solely on the GPI anchor. We found that internalized GFP-PrP(c) accumulates in Rab5-positive endosomes and that a Rab5 mutant alters the steady-state distribution of GFP-PrP(c) but not that of GFP-GPI between the plasma membrane and early endosomes. Therefore, we conclude that PrP(c) internalizes via a dynamin-dependent endocytic pathway and that the protein is targeted to the recycling endosomal compartment via Rab5-positive early endosomes. These observations indicate that traffic of GFP-PrP(c) is not determined predominantly by the GPI anchor and that, different from other GPI-anchored proteins, PrP(c) is delivered to classic endosomes after internalization.

Similar Articles

Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells

Author(s): Lee KS, Magalhães AC, Zanata SM, Brentani RR, Martins VR, et al.

Mutant prion proteins are partially retained in the endoplasmic reticulum

Author(s): Ivanova L, Barmada S, Kummer T, Harris DA

Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins

Author(s): Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, et al.

Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein

Author(s): Hachiya NS, Watanabe K, Yamada M, Sakasegawa Y, Kaneko K

Prion protein is necessary for normal synaptic function

Author(s): Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, et al.

The cellular prion protein binds copper in vivo

Author(s): Brown DR, Qin K, Herms JW, Madlung A, Manson J, et al.

Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles

Author(s): Peretti D, Peris L, Rosso S, Quiroga S, Cáceres A

Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites

Author(s): Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, et al.

Molecular motors: strategies to get along

Author(s): Mallik R, Gross SP

Movement of microtubules by single kinesin molecules

Author(s): Howard J, Hudspeth AJ, Vale RD