Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: a statement for health care professionals from the CRP Pooling Project members

Author(s): Di Napoli M, Schwaninger M, Cappelli R, Ceccarelli E, Di Gianfilippo G, et al.

Abstract

Background and purpose:Several studies have shown, in different populations, that modest elevation of plasma C-reactive protein (CRP) in the range seen in apparently healthy individuals is a strong predictor of future vascular events. Elevated plasma CRP concentrations are also associated with an increased risk of cerebrovascular events and an increased risk of fatal and nonfatal cardiovascular events in ischemic stroke patients. These epidemiological and clinical observations suggest that determination of plasma CRP concentrations could be used as an adjunct for risk assessment in primary and secondary prevention of cerebrovascular disease and be of prognostic value. The aim of this review is to summarize the evidence for CRP as an independent predictor of cerebrovascular events in at-risk individuals and ischemic stroke patients and to consider its usefulness in evaluating prognosis after stroke.

Summary of review:CRP fulfils most of the requirements of a new risk and prognostic predictor, but several issues await further confirmation and clarification before this marker can be included in the routine evaluation of stroke patients and subjects at risk for cerebrovascular disease. Potentially important associations have been established between elevated plasma CRP concentrations and increased efficacy of established therapies, particularly lipid-lowering therapy with statins.

Conclusions:At present, there is not sufficient evidence to recommend measurement of CRP in the routine evaluation of cerebrovascular disease risk in primary prevention, because there is insufficient evidence as to whether early detection, or intervention based on detection, improves health outcomes, although shared risk of cardiovascular disease indicates this may be of value. In secondary prevention of stroke, elevated CRP adds to existing prognostic markers, but it remains to be established whether specific therapeutic options can be derived from this.

Similar Articles

Outcome after brain haemorrhage

Author(s): Dennis MS

Molecular signatures of brain injury after intracerebral hemorrhage

Author(s): Castillo J, Davalos A, Alvarez-Sabin J, Pumar JM, Leira R, et al.

Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage

Author(s): Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, et al.

Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors

Author(s): Leira R, Davalos A, Silva Y, Gil-Peralta A, Tejada J

Headache in cerebral hemorrhage is associated with inflammatory markers and higher residual cavity

Author(s): Leira R, Castellanos M, Alvarez-Sabin J, Diez-Tejedor E, Davalos A, et al.

Predictors of good outcome in medium to large spontaneous supratentorial intracerebral haemorrhages

Author(s): Castellanos M, Leira R, Tejada J, Gil-Peralta A, Davalos A, et al.

C-reactive protein (CRP) in cerebro-vascular events

Author(s): Canova CR, Courtin C, Reinhart WH

Recommendations for the management of intracranial haemorrhage - part I: spontaneous intracerebral haemorrhage

Author(s): Steiner T, Kaste M, Forsting M, Mendelow D, Kwiecinski H, et al.

APACHE II: a severity of disease classification system

Author(s): Knaus WA, Draper EA, Wagner DP, Zimmerman JE

The ICH score: a simple, reliable grading scale for intracerebral hemorrhage

Author(s): Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC

The ABCs of measuring intracerebral hemorrhage volumes

Author(s): Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, et al.

Computed tomographic diagnosis of intraventricular hemorrhage

Author(s): Graeb DA, Robertson WD, Lapointe JS, Nugent RA, Harrison PB

Hyperglycemia and Short-term Outcome in Patients with Spontaneous Intracerebral Hemorrhage

Author(s): Godoy DA, Pinero GR, Svampa S, Papa F, Di Napoli M

Leukocytes and primary intracerebral hemorrhage

Author(s): Bestue-Cardiel M, Martin-Martinez J, Iturriaga-Heras C, Ara-Callizo JR, Oliveros-Juste A

Acute leukocyte and temperature response in hypertensive intracerebral hemorrhage

Author(s): Suzuki S, Kelley RE, Dandapani BK, Reyes-Iglesias Y, Dietrich WD, et al.

Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases

Author(s): Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, et al.

Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage

Author(s): Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, et al.

Absence of early proinflammatory cytokine expression in experimental intracerebral hemorrhage

Author(s): Qureshi AI, Suri MF, Ling GS, Khan J, Guterman LR, et al.