Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment

Author(s): Wasserman JK, Zhu X, Schlichter LC

Abstract

There are no effective treatments for intracerebral hemorrhage (ICH). Although inflammation is a potential therapeutic target, there is a dearth of information about time-dependent and cell-specific changes in the expression of inflammation-related genes. Using the collagenase-induced ICH model in rats and real-time quantitative RT-PCR we monitored mRNA levels of markers of glial activation, pro- and anti-inflammatory cytokines, enzymes responsible for cytokine activation and several matrix metalloproteases at 6 h and 1, 3 and 7 days after ICH onset. For the most highly up-regulated genes, immunohistochemistry was then used to identify cell-specific protein expression. Finally, minocycline, a drug widely reported to reduce damage in several models of brain injury, was used to test the hypothesis that it can reduce up-regulation of inflammation-related genes when administered using a clinically relevant dosing regime: intraperitoneal injection beginning 6 h after ICH. Our results show a complex inflammatory response, with different brain cell types producing several pro- and anti-inflammatory molecules for at least 7 days after ICH onset. Included is the first demonstration that astrocytes are an important source of interleukin-1beta (IL-1beta), interleukin-1 receptor antagonist (IL-1ra), interleukin-6 (IL-6) and MMP-12. Importantly, our results demonstrate that while delayed minocycline treatment effectively reduces early up-regulation of TNFalpha and MMP-12, its efficacy is lost when treatment is extended for up to a week, and it does not reduce several other genes associated with microglia activation. These results suggest caution in extrapolating to ICH the promising results of minocycline treatment in other models of brain injury.

Similar Articles

Outcome after brain haemorrhage

Author(s): Dennis MS

Molecular signatures of brain injury after intracerebral hemorrhage

Author(s): Castillo J, Davalos A, Alvarez-Sabin J, Pumar JM, Leira R, et al.

Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage

Author(s): Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, et al.

Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors

Author(s): Leira R, Davalos A, Silva Y, Gil-Peralta A, Tejada J

Headache in cerebral hemorrhage is associated with inflammatory markers and higher residual cavity

Author(s): Leira R, Castellanos M, Alvarez-Sabin J, Diez-Tejedor E, Davalos A, et al.

Predictors of good outcome in medium to large spontaneous supratentorial intracerebral haemorrhages

Author(s): Castellanos M, Leira R, Tejada J, Gil-Peralta A, Davalos A, et al.

C-reactive protein (CRP) in cerebro-vascular events

Author(s): Canova CR, Courtin C, Reinhart WH

Recommendations for the management of intracranial haemorrhage - part I: spontaneous intracerebral haemorrhage

Author(s): Steiner T, Kaste M, Forsting M, Mendelow D, Kwiecinski H, et al.

APACHE II: a severity of disease classification system

Author(s): Knaus WA, Draper EA, Wagner DP, Zimmerman JE

The ICH score: a simple, reliable grading scale for intracerebral hemorrhage

Author(s): Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC

The ABCs of measuring intracerebral hemorrhage volumes

Author(s): Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, et al.

Computed tomographic diagnosis of intraventricular hemorrhage

Author(s): Graeb DA, Robertson WD, Lapointe JS, Nugent RA, Harrison PB

Hyperglycemia and Short-term Outcome in Patients with Spontaneous Intracerebral Hemorrhage

Author(s): Godoy DA, Pinero GR, Svampa S, Papa F, Di Napoli M

Leukocytes and primary intracerebral hemorrhage

Author(s): Bestue-Cardiel M, Martin-Martinez J, Iturriaga-Heras C, Ara-Callizo JR, Oliveros-Juste A

Acute leukocyte and temperature response in hypertensive intracerebral hemorrhage

Author(s): Suzuki S, Kelley RE, Dandapani BK, Reyes-Iglesias Y, Dietrich WD, et al.

Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases

Author(s): Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, et al.

Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage

Author(s): Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, et al.

Absence of early proinflammatory cytokine expression in experimental intracerebral hemorrhage

Author(s): Qureshi AI, Suri MF, Ling GS, Khan J, Guterman LR, et al.