Kinesin superfamily proteins and their various functions and dynamics

Author(s): Hirokawa N, Takemura R

Abstract

Kinesin superfamily proteins (KIFs) are motor proteins that transport membranous organelles and macromolecules fundamental for cellular functions along microtubules. Their roles in transport in axons and dendrites have been studied extensively, but KIFs are also used in intracellular transport in general. Recent findings have revealed that in many cases, the specific interaction of cargoes and motors is mediated via adaptor/scaffolding proteins. Cargoes are sorted to precise destinations, such as axons or dendrites. KIFs also participate in polarized transport in epithelial cells as shown in the apical transport of annexin XIIIb-containing vesicles by KIFC3. KIFs play important roles in higher order neuronal activity; transgenic mice overexpressing KIF17, which transports N-methyl-d-asp (NMDA) receptors to dendrites, show enhanced memory and learning. KIFs also play significant roles in neuronal development and brain wiring: KIF2A suppresses elongation of axon collaterals by its unique microtubule-depolymerizing activity. X-ray crystallography has revealed the structural uniqueness of KIF2 underlying the microtubule-depolymerizing activity. In addition, single molecule biophysics and optical trapping have shown that the motility of monomeric KIF1A is caused by biased Brownian movement, and X-ray crystallography has shown how the conformational changes occur for KIF1A to move during ATP hydrolysis. These multiple approaches in analyzing KIF functions will illuminate many basic mechanisms underlying intracellular events and will be a very promising and fruitful area for future studies.

Similar Articles

Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells

Author(s): Lee KS, Magalhães AC, Zanata SM, Brentani RR, Martins VR, et al.

Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein

Author(s): Magalhães AC, Silva JA, Lee KS, Martins VR, Prado VF, et al.

Mutant prion proteins are partially retained in the endoplasmic reticulum

Author(s): Ivanova L, Barmada S, Kummer T, Harris DA

Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins

Author(s): Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, et al.

Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein

Author(s): Hachiya NS, Watanabe K, Yamada M, Sakasegawa Y, Kaneko K

Prion protein is necessary for normal synaptic function

Author(s): Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, et al.

The cellular prion protein binds copper in vivo

Author(s): Brown DR, Qin K, Herms JW, Madlung A, Manson J, et al.

Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles

Author(s): Peretti D, Peris L, Rosso S, Quiroga S, Cáceres A

Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites

Author(s): Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, et al.

Molecular motors: strategies to get along

Author(s): Mallik R, Gross SP

Movement of microtubules by single kinesin molecules

Author(s): Howard J, Hudspeth AJ, Vale RD