Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats

Author(s): Suzuki H, Hasegawa Y, Kanamaru K, Zhang JH


Background and purpose:Osteopontin (OPN) is an inducible, multifunctional, extracellular matrix protein that may be protective against blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH). However, the protective mechanisms remain unclear.

Methods:We produced the endovascular perforation model of SAH in rats and studied the time course of OPN induction in brains by Western blotting and immunofluorescence (n=50). Then, 34 rats were randomly assigned to sham (n=3), sham+OPN small interfering RNA (siRNA, n=3), SAH+negative control siRNA (n=14), and SAH+OPN siRNA (n=14) groups, and 109 rats were allocated to sham+vehicle (n=17), sham+recombinant OPN (n=17), SAH+vehicle (n=33), SAH+recombinant OPN (n=31), and SAH+recombinant OPN+L-arginyl-glycyl-L-aspartate motif-containing hexapeptide (n=11) groups. The effects of OPN siRNA or recombinant OPN on BBB disruption and related proteins were studied.

Results:OPN was significantly induced in reactive astrocytes and capillary endothelial cells, peaking at 72 hours after SAH, during the recovery phase of BBB disruption. Blockage of endogenous OPN induction exacerbated BBB disruption and was associated with a reduction of angiopoietin-1 and mitogen-activated protein kinase (MAPK) phosphatase-1 (an endogenous MAPK inhibitor), activation of MAPKs, and induction of vascular endothelial growth factor-A at 72 hours after SAH, whereas recombinant OPN treatment improved it and was associated with MAPK phosphatase-1 induction, MAPK inactivation, and vascular endothelial growth factor-A reduction, which was blocked by L-arginyl-glycyl-L-aspartate motif-containing hexapeptide at 24 hours after SAH. Vascular endothelial growth factor-B and angiopoietin-2 levels were unchanged.

Conclusions:OPN may increase MAPK phosphatase-1 that inactivates MAPKs, upstream and downstream of vascular endothelial growth factor-A, by binding to L-arginyl-glycyl-L-aspartate-dependent integrin receptors, suggesting a novel mechanism of OPN-induced post-SAH BBB protection.

Similar Articles

Cerebral vasospasm following aneurysmal subarachnoid hemorrhage

Author(s): Kassell NF, Sasaki T, Colohan AR, Nazar G

Altered patterns of gene expression in response to myocardial infarction

Author(s): Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, et al.

Genomics of human intracranial aneurysm wall

Author(s): Shi C, Awad IA, Jafari N, Lin S, Du P, et al.

Bioconductor: open software development for computational biology and bioinformatics

Author(s): Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al.

TM4 microarray software suite

Author(s): Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al.

Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats

Author(s): Suzuki H, Kanamaru K, Tsunoda H, Inada H, Kuroki M, et al.

Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat

Author(s): Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L

Gene expression in a canine basilar artery vasospasm model: a genome-wide network-based analysis

Author(s): Sasahara A, Kasuya H, Krischek B, Tajima A, Onda H, et al.

Global quantification of mammalian gene expression control

Author(s): Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al.

Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage

Author(s): Borel CO, McKee A, Parra A, Haglund MM, Solan A, et al.

Oxidative stress activates STAT1 in basilar arteries after subarachnoid hemorrhage

Author(s): Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Wakabayashi T, et al.

Cerebral artery spasm

Author(s): Hughes JT, Schianchi PM

Stroke: anatomy of a catastrophic event

Author(s): Zhang J, Lewis A, Bernanke D, Zubkov A, Clower B

Neuroprotection by osteopontin in stroke

Author(s): Meller R, Stevens SL, Minami M, Cameron JA, King S, et al.

Expression, roles, receptors, and regulation of osteopontin in the kidney

Author(s): Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, et al.

Apoptosis of endothelial cells in vessels affected by cerebral vasospasm

Author(s): Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J

Morphological changes of cerebral arteries in a canine double hemorrhage model

Author(s): Zubkov AY, Tibbs RE, Clower B, Ogihara K, Aoki K, et al.

Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Yamashita M, Fujiwara S, Zuccarello M

Barrier disruption in the major cerebral arteries during the acute stage after experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Zuccarello M, Nakagomi T, Fijiwara S, et al.

Immune complexes and complement activation following rupture of intracranial saccular aneurysms

Author(s): Ostergaard JR, Kristensen BO, Svehag SE, Teisner B, Miletic T