Moderate posttraumatic hypothermia decreases early calpain-mediated proteolysis and concomitant cytoskeletal compromise in traumatic axonal injury

Author(s): Büki A, Koizumi H, Povlishock JT

Abstract

Traumatic brain injury (TBI) in animals and man generates widespread axonal injury characterized by focal axolemmal permeability changes, induction of calpain-mediated proteolysis, and neurofilament side-arm modification associated with neurofilament compaction (NFC) evolving to axonal disconnection. Recent observations have suggested that moderate hypothermia is neuroprotective in several models of TBI. Nevertheless, the pathway by which hypothermia prevents traumatic axonal injury (TAI) is still a matter of debate. The present study was conducted to evaluate the effects of moderate, early posttraumatic hypothermia on calpain-mediated spectrin proteolysis (CMSP), implicated in the pathogenesis of TAI. Using moderate (32 degrees C) hypothermia of 90 min duration without rewarming, the density of CMSP immunoreactive/damaged axons was quantified via LM analysis in vulnerable brain stem fiber tracts of hypothermic and normothermic rats subjected to impact acceleration TBI (90 min postinjury survival). To assess the influence of posthypothermic rewarming, a second group of animals was subjected to 90 min of hypothermia followed by 90 min of rewarming to normothermic levels when CMSP was analyzed to detect if any purported CMSP prevention persisted (180 min postinjury survival). Additionally, to determine if this protection translated into comparable cytoskeletal protection in the same foci showing decreased CMSP, antibodies targeting altered/compacted NF subunits were also employed. Moderate hypothermia applied in the acute postinjury period drastically reduced the number of damaged axons displaying CMSP at both time points and significantly reduced NFC immunoreactivity at 180 min postinjury. These results suggest that the neuroprotective effects of hypothermia in TBI are associated with the inhibition of axonal/cytoskeletal damage.

Similar Articles

Antisaccades and remembered saccades in mild traumatic brain injury

Author(s): Crevits L, Hanse MC, Tummers P, Van Maele G

Subacute to chronic mild traumatic brain injury

Author(s): Mott TF, McConnon ML, Rieger BP

Meta-analysis of APOE4 allele and outcome after traumatic brain injury

Author(s): Zhou W, Xu D, Peng X, Zhang Q, Jia J, et al.

Traumatic brain injuries evaluated in U

Author(s): Jager TE, Weiss HB, Coben JH, Pepe PE

A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury

Author(s): Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, et al.

The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury

Author(s): Büki A, Siman R, Trojanowski JQ, Povlishock JT

Neuronal cytoskeletal changes are an early consequence of repetitive head injury

Author(s): Geddes JF, Vowles GH, Nicoll JA, Révész T

mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury

Author(s): Kampfl A, Posmantur R, Nixon R, Grynspan F, Zhao X, et al.

Nimodipine attenuates lipid peroxidation during the acute phase of head trauma in rats

Author(s): Ercan M, Inci S, Kilinc K, Palaoglu S, Aypar U