Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons

Author(s): Viemari JC, Ramirez JM


Pacemakers are found throughout the mammalian CNS. Yet, it remains largely unknown how these neurons contribute to network activity. Here we show that for the respiratory network isolated in transverse slices of mice, different functions can be assigned to different types of pacemakers and nonpacemakers. This difference becomes evident in response to norepinephrine (NE). Although NE depolarized 88% of synaptically isolated inspiratory neurons, this neuromodulator had differential effects on different neuron types. NE increased in cadmium-insensitive pacemakers burst frequency, not burst area and duration, and it increased in cadmium-sensitive pacemakers burst duration and area, but not frequency. NE also differentially modulated nonpacemakers. Two types of nonpacemakers were identified: "silent nonpacemakers" stop spiking, whereas "active nonpacemakers" spontaneously spike when isolated from the network. NE selectively induced cadmium-sensitive pacemaker properties in active, but not silent, nonpacemakers. Flufenamic acid (FFA), a blocker of ICAN, blocked the induction as well as modulation of cadmium-sensitive pacemaker activity, and blocked at the network level the NE-induced increase in burst area and duration of inspiratory network activity; the frequency modulation (FM) was unaffected. We therefore propose that modulation of cadmium-sensitive pacemaker activity contributes at the network level to changes in burst shape, not frequency. Riluzole blocked the FM of isolated cadmium-insensitive pacemakers. In the presence of riluzole, NE caused disorganized network activity, suggesting that cadmium-insensitive pacemakers are critical for rhythm generation. We conclude that different types of nonpacemaker and pacemaker neurons differentially control different aspects of the respiratory rhythm.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS