Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

Abstract

The present minireview describes experiments carried out, in short-term crush-operated rat nerves, using immunofluorescence and cytofluorimetric scanning techniques to study endogenous substances in anterograde and retrograde fast axonal transport. Vesicle membrane components p38 (synaptophysin) and SV2 are accumulating on both sides of a crush, but a larger proportion of p38 (about 3/4) than of SV2 (about 1/2) is recycling toward the cell body, compared to the amount carried with anterograde transport. Matrix peptides, such as CGRP, ChRA, VIP, and DBH are recycling to a minor degree, although only 10-20% of surface-associated molecules, such as synapsins and kinesin, appear to recycle. The described methodological approach to study the composition of organelles in fast axonal transport, anterograde as compared to retrograde, is shown to be useful for investigating neurobiological processes. We make use of the "in vivo chromatography" process that the fast axonal transport system constitutes. Only substances that are in some way either stored in, or associated with, transported organelles can be clearly observed to accumulate relative to the crush region. Emphasis in this paper was given to the synapsins, because of diverging results published concerning the degree of affiliation with various neuronal organelles. Our previously published results have indicated that in the living axons the SYN I is affiliated with mainly anterogradely fast transported organelles. Therefore, some preliminary, previously unpublished results on the accumulations of the four different synapsins (SYN Ia, SYN Ib, SYN IIa, and SYN IIb), using antisera specific for each of the four members of the synapsin family, are described. It was found that SYN Ib clearly has a stronger affiliation to anterogradely transported organelles than SYN Ia, and that both SYN IIa and SYN IIb are bound to some degree to transported organelles.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS