Purification and properties of the cellular prion protein from Syrian hamster brain

Author(s): Pan KM, Stahl N, Prusiner SB


The cellular prion protein (PrPC) is encoded by a chromosomal gene, and its scrapie isoform (PrPSc) features in all aspects of the prion diseases. Prior to the studies reported here, purification of PrPC has only been accomplished using immunoaffinity chromatography yielding small amounts of protein. Brain homogenates contain two PrPC forms designated PrPC-I and -II. These proteins were purified from a microsomal fraction by detergent extraction and separated by immobilized Cu2+ ion affinity chromatography. PrPC-II appears to be generated from PrPC-I by limited proteolysis of the N-terminus. Fractions enriched for PrPC-I were purified further by cation-exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Greater than 90% of the final product migrated as a broad band of M(r) 33-35 kDa as judged by silver staining after SDS-PAGE. Digestion of PrPC-I with peptide-N-glycosidase (PNGase) compressed the band and shifted its mobility giving an M(r) of 27 kDa. The protocol described should be amenable to large-scale preparation of PrPC, enabling physical comparisons of PrPC and PrPSc.

Similar Articles

Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells

Author(s): Lee KS, Magalhães AC, Zanata SM, Brentani RR, Martins VR, et al.

Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein

Author(s): Magalhães AC, Silva JA, Lee KS, Martins VR, Prado VF, et al.

Mutant prion proteins are partially retained in the endoplasmic reticulum

Author(s): Ivanova L, Barmada S, Kummer T, Harris DA

Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins

Author(s): Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, et al.

Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein

Author(s): Hachiya NS, Watanabe K, Yamada M, Sakasegawa Y, Kaneko K

Prion protein is necessary for normal synaptic function

Author(s): Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, et al.

The cellular prion protein binds copper in vivo

Author(s): Brown DR, Qin K, Herms JW, Madlung A, Manson J, et al.

Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles

Author(s): Peretti D, Peris L, Rosso S, Quiroga S, Cáceres A

Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites

Author(s): Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, et al.

Molecular motors: strategies to get along

Author(s): Mallik R, Gross SP

Movement of microtubules by single kinesin molecules

Author(s): Howard J, Hudspeth AJ, Vale RD