Author(s): Bandtlow CE
Unlike neonatal axons, mammalian adult axons of the CNS do not regenerate after injury. This developmental loss of regenerative capacity, is correlated with the onset of myelination. Likewise, myelin, or myelin-associated components such as Nogo-A and myelin-associated glycoprotein (MAG) inhibit regeneration from older but not younger neurons. Identification of the molecular events responsible for this developmental loss of regenerative capacity is central to devise strategies to encourage regeneration in adults after injury. Endogenous levels of the cyclic nucleotides cAMP and cGMP have been suggested to determine the neuronal responsiveness to various axonal guidance factors. Elevating cAMP concentrations block Nogo-A or MAG induced inhibition of neurite outgrowth in older neurons, whereas suppressing cAMP levels in young neurons renders them susceptible to Nogo-A and MAG. Interestingly, elevated cAMP levels abrogated the Nogo-A and MAG mediated activation of RhoA and down regulation of Rac1 in adult neurons. In contrast, elevation of cAMP leads to the inactivation of RhoA and prevents activation of downstream effector proteins, while Rac is activated. We therefore conclude that the endogenous neuronal cAMP levels determine the neuronal responsiveness to myelin-associated neurite growth inhibitors by regulating rho GTPase activities.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/12543264
Author(s): Decuypere M, Klimo P Jr
Author(s): Blostein PA, Jones SJ, Buechler CM, Vandongen S
Author(s): Crevits L, Hanse MC, Tummers P, Van Maele G
Author(s): Brösamle C, Huber AB, Fiedler M, Skerra A, Schwab ME
Author(s): Mott TF, McConnon ML, Rieger BP
Author(s): McCrea M, Pliskin N, Barth J, Cox D, Fink J, et al.
Author(s): van Leeuwen N, Lingsma HF, Perel P, Lecky F, Roozenbeek B, et al.
Author(s): Zhou W, Xu D, Peng X, Zhang Q, Jia J, et al.
Author(s): Jager TE, Weiss HB, Coben JH, Pepe PE
Author(s): Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, et al.
Author(s): Bigler ED, Maxwell WL
Author(s): Königs M, de Kieviet JF, Oosterlaan J
Author(s): Rohling ML, Binder LM, Demakis GJ, Larrabee GJ, Ploetz DM, et al.
Author(s): Simmons AN, Matthews SC
Author(s): Panayiotou A, Jackson M, Crowe SF
Author(s): Caner H, Can A, Atalay B, Erdogan B, Albayrak AH, et al.
Author(s): Abu-Judeh HH, Parker R, Singh M, el-Zeftawy H, Atay S, et al.
Author(s): Atalay B, Caner H, Can A, Cekinmez M
Author(s): Tymianski M, Tator CH
Author(s): Abrous DN, Rodriguez J, le Moal M, Moser PC, Barnéoud P
Author(s): Büki A, Koizumi H, Povlishock JT
Author(s): Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, et al.
Author(s): Büki A, Siman R, Trojanowski JQ, Povlishock JT
Author(s): Geddes JF, Vowles GH, Nicoll JA, Révész T
Author(s): Saatman KE, Zhang C, Bartus RT, McIntosh TK
Author(s): Posmantur R, Kampfl A, Siman R, Liu J, Zhao X, et al.
Author(s): Kampfl A, Posmantur R, Nixon R, Grynspan F, Zhao X, et al.
Author(s): Ercan M, Inci S, Kilinc K, Palaoglu S, Aypar U