Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment

Author(s): Brösamle C, Huber AB, Fiedler M, Skerra A, Schwab ME

Abstract

Axons in the CNS of higher vertebrates generally fail to regenerate after injury. This lack of regeneration is crucially influenced by neurite growth inhibitory protein constituents of CNS myelin. We have shown previously that a monoclonal antibody (mAb IN-1) capable of binding and neutralizing Nogo-A, a myelin-associated inhibitor of neurite growth, can induce long-distance axonal regeneration and increased structural plasticity with improved functional recovery in rat models of CNS injury. In this paper we demonstrate that a partially humanized, recombinant Fab fragment (rIN-1 Fab) derived from the original mAb IN-1, was able to promote long-distance regeneration of injured axons in the spinal cord of adult rats. When infused into a spinal cord injury site, regrowth of corticospinal fibers in 11 of 18 animals was observed after a survival time of 2 weeks. Regenerating fibers grew for >9 mm beyond the lesion site and arborized profusely in the distal cord. Regenerated fibers formed terminal arbors with varicosities in the spinal cord gray matter, strongly resembling synaptic points of contact to neurons in the spinal cord distal to the lesion. In animals that had received a bovine serum albumin solution or a recombinant IN-1 fragment that had been mutated in the antigen binding site (mutIN-1 Fab), no significant growth beyond normal lesion-induced sprouting was observed. Neutralization of endogenous nerve growth inhibitors represents a novel use of recombinant antibody technology with potential therapeutic applications after traumatic CNS lesions.

Similar Articles

Antisaccades and remembered saccades in mild traumatic brain injury

Author(s): Crevits L, Hanse MC, Tummers P, Van Maele G

Subacute to chronic mild traumatic brain injury

Author(s): Mott TF, McConnon ML, Rieger BP

Meta-analysis of APOE4 allele and outcome after traumatic brain injury

Author(s): Zhou W, Xu D, Peng X, Zhang Q, Jia J, et al.

Traumatic brain injuries evaluated in U

Author(s): Jager TE, Weiss HB, Coben JH, Pepe PE

A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury

Author(s): Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, et al.

The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury

Author(s): Büki A, Siman R, Trojanowski JQ, Povlishock JT

Neuronal cytoskeletal changes are an early consequence of repetitive head injury

Author(s): Geddes JF, Vowles GH, Nicoll JA, Révész T

mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury

Author(s): Kampfl A, Posmantur R, Nixon R, Grynspan F, Zhao X, et al.

Nimodipine attenuates lipid peroxidation during the acute phase of head trauma in rats

Author(s): Ercan M, Inci S, Kilinc K, Palaoglu S, Aypar U