Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage

Author(s): Zhou C, Yamaguchi M, Colohan AR, Zhang JH

Abstract

Our previous studies indicate that apoptosis in endothelial cells of major cerebral arteries contributes to cerebral vasospasm after subarachnoid hemorrhage (SAH). This study examined the pathologic roles of tumor suppressor p-53 in cerebral vasospasm using an established dog double-hemorrhage model. Twenty mongrel dogs were divided into four groups: (1) control, (2) SAH, (3) SAH+DMSO (vehicle), and (4) SAH+pifithrin-alpha (PFT) (p53 inhibitor). The p53 inhibitor (200 nmol/L) was injected into the cisterna magna daily from Day 0 through Day 3. Angiogram was performed on Day 0 and Day 7. Western blot, cell proliferation assay, histology, and TUNEL staining were conducted on the basilar arteries collected on Day 7 after SAH. The arterial diameter on Day 7 was 42%+/-4%, 40%+/-5%, and 59%+/-4% for SAH, SAH+DMSO, and SAH+PFT, respectively. In addition, positive staining of TUNEL and increased protein expression of p53, Bax, and PCNA in the basilar artery were observed on Day 7. PFT suppressed apoptosis in endothelial cells and proliferation in smooth muscle cells, and attenuated angiographic vasospasm. In conclusion, p53 may be a key factor in endothelial apoptosis and smooth muscle proliferation after SAH. Inhibition of p53 may potentially reduce or even prevent cerebral vasospasm.

Similar Articles

Cerebral vasospasm following aneurysmal subarachnoid hemorrhage

Author(s): Kassell NF, Sasaki T, Colohan AR, Nazar G

Altered patterns of gene expression in response to myocardial infarction

Author(s): Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, et al.

Genomics of human intracranial aneurysm wall

Author(s): Shi C, Awad IA, Jafari N, Lin S, Du P, et al.

Bioconductor: open software development for computational biology and bioinformatics

Author(s): Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al.

TM4 microarray software suite

Author(s): Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al.

Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats

Author(s): Suzuki H, Kanamaru K, Tsunoda H, Inada H, Kuroki M, et al.

Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat

Author(s): Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L

Gene expression in a canine basilar artery vasospasm model: a genome-wide network-based analysis

Author(s): Sasahara A, Kasuya H, Krischek B, Tajima A, Onda H, et al.

Global quantification of mammalian gene expression control

Author(s): Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al.

Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage

Author(s): Borel CO, McKee A, Parra A, Haglund MM, Solan A, et al.

Oxidative stress activates STAT1 in basilar arteries after subarachnoid hemorrhage

Author(s): Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Wakabayashi T, et al.

Cerebral artery spasm

Author(s): Hughes JT, Schianchi PM

Stroke: anatomy of a catastrophic event

Author(s): Zhang J, Lewis A, Bernanke D, Zubkov A, Clower B

Neuroprotection by osteopontin in stroke

Author(s): Meller R, Stevens SL, Minami M, Cameron JA, King S, et al.

Expression, roles, receptors, and regulation of osteopontin in the kidney

Author(s): Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, et al.

Apoptosis of endothelial cells in vessels affected by cerebral vasospasm

Author(s): Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J

Morphological changes of cerebral arteries in a canine double hemorrhage model

Author(s): Zubkov AY, Tibbs RE, Clower B, Ogihara K, Aoki K, et al.

Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Yamashita M, Fujiwara S, Zuccarello M

Barrier disruption in the major cerebral arteries during the acute stage after experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Zuccarello M, Nakagomi T, Fijiwara S, et al.

Immune complexes and complement activation following rupture of intracranial saccular aneurysms

Author(s): Ostergaard JR, Kristensen BO, Svehag SE, Teisner B, Miletic T