Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1alpha (HIF-1a) under in vivo hypoxia in rat brainstem

Author(s): Pascual O, Denavit-Saubie M, Dumas S, Kietzmann T, Ghilini G, et al.

Abstract

Under severe oxygen deprivation, all cells are able to express the transcription factor HIF-1, which activates a wide range of genes. Under tolerable hypoxia, chemosensory inputs are integrated in brainstem areas, which control cardiorespiratory responses. However, the molecular mechanisms of this functional acclimatization are unknown. We investigated when and where the inducible HIF-1alpha subunit is expressed in the rat brainstem in vivo, under physiological hypoxia. The regional localization of HIF-1alpha mRNA and protein was determined by in situ hybridization and immunocytochemistry in adult male rats exposed to moderate hypoxia (10% O2) for 1-6 h. HIF-1alpha protein was found in cell types identified by immunocytochemistry as catecholaminergic neurons. Hypoxia induced HIF-1alpha mRNA and protein in only some parts of the brainstem located dorsomedially and ventrolaterally, which are those involved in the cardiorespiratory control. No labelling was detected under normoxia. The protein was detected in glia and neurons after 1 and 6 h of hypoxia, respectively. A subset of A2C2 and A1C1 catecholaminergic neurons colocalized tyrosine hydroxylase and HIF-1alpha proteins under hypoxia, but no HIF-1alpha was detected in more rostral catecholaminergic areas. In contrast to cardiorespiratory areas, HIF-1alpha protein was already present under normoxia in glial cells of brainstem tracts but was not overexpressed under hypoxia, although HIF-1alpha mRNA was up-regulated. In conclusion, there appear to be two regulatory mechanisms for HIF-1alpha expression in the brainstem: hypoxic induction of HIF-1alpha protein in cardiorespiratory-related areas and constitutive protein expression unaffected by hypoxia in brainstem tracts.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS