Synaptic interaction of vagal afferents and catecholaminergic neurons in the rat nucleus tractussolitarius

Author(s): Sumal KK, Blessing WW, Joh TH, Reis DJ, Pickel VM


Combined radioautography and immunocytochemistry were used to define the ultrastructure and synaptic relations between vagal sensory afferents and catecholaminergic (CA) neurons of the A2 group located within the nucleus tractus solitarius (NTS) of rat brain. The vagal afferents were radioautographically labeled by tritiated amino acids anterogradely transported from the nodose ganglion. Immunocytochemical labeling for tyrosine hydroxylase (TH) served for the identification of catecholaminergic neurons. The radiographically labeled axons seen by light microscopy were widely distributed throughout the more caudal NTS. The reduced silver grains were more densely distributed within the NTS located homolateral to the injected nodose ganglion. The radioautographically labeled processes were localized in regions containing catecholaminergic neurons as indicated by immunoreactivity for TH. Electron microscopic analysis of the medial NTS at the level of the obex demonstrated that the reduced silver grains were localized within axon terminals. The radioautographically labeled terminals were 2-3 microns in diameter, contained numerous small, clear and a few large, dense vesicles, and formed predominately axodendritic synapses. Many of the recipient dendrites contained immunoreactivity for TH. In rare instances, vagal afferents formed synaptic appositions with both TH-labeled and unlabeled axon terminals and neuronal soma. This study provides the first ultrastructural evidence that the catecholaminergic neurons within the NTS receive direct synapses from sensory neurons in the nodose ganglion.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS