T1 lesion load and cerebral atrophy as a marker for clinical progression in patients with multiple sclerosis

Author(s): Sailer M, Losseff NA, Wang L, Gawne-Cain ML, Thompson AJ, et al.

Abstract

We investigated the relationship between local tissue destruction, diffuse cerebral atrophy and clinical progression in patients with established multiple sclerosis (MS). Twenty-nine patients with MS (13 patients with relapsing--remitting and 16 with secondary progressive disease) were included in a prospective serial study. Cerebral volumes, T1 hypointense lesion volumes, T2 hyperintense lesion volumes at baseline and at 18 months follow-up, and the volume of monthly enhancing lesions from month 0 to month 9 were assessed on magnetic resonance imaging (MRI) brain scans using highly reproducible semi-automated quantitative techniques. The main outcome measures were the MRI parameters and disability on Kurtzkes' Expanded Disability Status Scale. There was a significant correlation between the change (increase) in T1 lesion volume and progressive cerebral atrophy, whereas no correlation between the T2 lesion volume and atrophy was seen over the same follow-up period. The change in T1 lesion volume correlated more strongly than did T2 lesion volume change with the change in disability. We conclude that hypointense abnormalities detected in T1-weighted brain scans and cerebral atrophy may be directly linked. Although one should bear in mind some potential for reversibility due to inflammatory, oedematous lesions, these MR measures are a useful marker of progressive tissue damage and clinical progression in established MS.

Similar Articles

Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study

Author(s): Wuerfel J, Bellmann-Strobl J, Brunecker P, Aktas O, McFarland H, et al.

Axonal transection in the lesions of multiple sclerosis

Author(s): Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, et al.

Magnetic resonance frequency shifts during acute MS lesion formation

Author(s): Wiggermann V, Hernández Torres E, Vavasour IM, Moore GR, Laule C, et al.

Weekly diffusion-weighted imaging of normal-appearing white matter in MS

Author(s): Rocca MA, Cercignani M, Iannucci G, Comi G, Filippi M

Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis

Author(s): van Walderveen MA, Kamphorst W, Scheltens P, van Waesberghe JH, Ravid R, et al.

MRI in multiple sclerosis: current status and future prospects

Author(s): Bakshi R, Thompson AJ, Rocca MA, Pelletier D, Dousset V, et al.

Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T

Author(s): Ingrisch M, Sourbron S, Morhard D, Ertl-Wagner B, Kümpfel T, et al.

Diffusion tensor magnetic resonance imaging in multiple sclerosis

Author(s): Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G

Hypoperfusion and T1-hypointense lesions in white matter in multiple sclerosis

Author(s): Narayana PA, Zhou Y, Hasan KM, Datta S, Sun X, et al.

White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis

Author(s): Varga AW, Johnson G, Babb JS, Herbert J, Grossman RI, et al.

Brain atrophy: an in-vivo measure of disease activity in multiple sclerosis

Author(s): Radü EW, Bendfeldt K, Mueller-Lenke N, Magon S, Sprenger T

Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria"

Author(s): Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, et al.

Clinical correlations of brain lesion distribution in multiple sclerosis

Author(s): Vellinga MM, Geurts JJ, Rostrup E, Uitdehaag BM, Polman CH, et al.

Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR

Author(s): van Waesberghe JH, van Walderveen MA, Castelijns JA, Scheltens P, Lycklama à Nijeholt GJ, et al.

Measuring myelin repair and axonal loss with diffusion tensor imaging

Author(s): Fox RJ, Cronin T, Lin J, Wang X, Sakaie K, et al.

Imaging axonal damage of normal-appearing white matter in multiple sclerosis

Author(s): Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, et al.

Secondary progressive multiple sclerosis: the relationship between short-term MRI activity and clinical features

Author(s): Tubridy N, Coles AJ, Molyneux P, Compston DA, Barkhof F, et al.

Predicting gadolinium enhancement status in MS patients eligible for randomized clinical trials

Author(s): Barkhof F, Held U, Simon JH, Daumer M, Fazekas F, et al.

Poor PASAT performance correlates with MRI contrast enhancement in multiple sclerosis

Author(s): Bellmann-Strobl J, Wuerfel J, Aktas O, Dörr J, Wernecke KD, et al.