The antinociceptive effect of reversible monoamine oxidase-a inhibitors in a mouse neuropathic pain model

Author(s): Jardel G, Villarinho B, Kelly de V, Pinheirfrancielle D, Oliveira SM, Machado P, et al.

Abstract

Neuropathic pain is a debilitating condition that is often resistant to common analgesics, such as opioids, but is sensitive to some antidepressants, an effect that seems to be mediated by spinal cord 5-HT3 receptors. Because the analgesic potential of monoamine oxidase-A (MAO-A) inhibitors is understudied, we evaluated the potential antinociceptive effect of the reversible MAO-A inhibitors moclobemide and 2-(3,4-dimethoxy-phenyl)-4,5-dihydro-1H-imidazole (2-DMPI) in a mouse neuropathic pain model induced by chronic constriction injury (CCI) of the sciatic nerve. Neuropathic mice showed a decreased mechanical paw withdrawal threshold (PWT) 7 days after lesion compared with the baseline PWT, characterizing the development of hyperalgesia. Moclobemide (100-300 μmol/kg, s.c.) and 2-DMPI (30-300 μmol/kg, s.c.) treatments were able to reverse the CCI-induced hyperalgesia, with 50% inhibitory dose (ID50) values of 39 (18-84) and 11 (4-33) μmol/kg, and maximum inhibition (Imax) values of 88±14 and 98±15%, respectively, at the 300 μmol/kg dose. In addition, we observed a significant increase in the MAO-A activity in the lumbar spinal cord of CCI-submitted mice compared with sham-operated animals. Furthermore, the antihyperalgesic effects of both 2-DMPI and moclobemide were largely reversed by intrathecal injection of the 5-HT3 receptor antagonist ondansetron (10 μg/site). These results suggest a possible involvement of MAO-A in the mechanisms of neuropathic pain and a potential utility of the reversible inhibitors of MAO-A in the development of new therapeutic approaches to treat it.

Similar Articles

Biology and chemistry of Ginkgo biloba

Author(s): Singh B, Kaur P, Gopichand, Singh RD, Ahuja PS

Memory expression is independent of memory labilization/reconsolidation

Author(s): Barreiro KA, Suárez LD, Lynch VM, Molina VA, Delorenzi A

Role of amygdala in drug memory

Author(s): Luo YX, Xue YX, Shen HW, Lu L

The impact of stroke on cognitive processing - a prospective event-related potential study

Author(s): Stahlhut L, Grotemeyer KH2, Husstedt IW1, Evers S3

Piracetam prevents cognitive decline in coronary artery bypass: a randomized trial versus placebo

Author(s): Szalma I, Kiss A, Kardos L, Horváth G, Nyitrai E, et al.

Evidence-based pharmacotherapy of Alzheimer's disease

Author(s): Evans JG, Wilcock G, Birks J

A new polysaccharide from leaf of Ginkgo biloba L

Author(s): Yang JF, Zhou DY, Liang ZY

Fingerprint profile of Ginkgo biloba nutritional supplements by LC/ESI-MS/MS

Author(s): Ding S, Dudley E, Plummer S, Tang J, Newton RP, et al.

Effects of Ginkgo biloba extract (EGb 761) on learning and possible actions on aging

Author(s): Cohen-Salmon C, Venault P, Martin B, Raffalli-Sébille MJ, Barkats M, et al.

The memory-enhancing effects of Ginseng and Ginkgo biloba in healthy volunteers

Author(s): Persson J, Bringlöv E, Nilsson LG, Nyberg L

Cognitive deterioration after venlafaxine overdose

Author(s): García-Cabeza I, de Blas MM, Epifanio MM, de Chávez MG