The distribution of tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyltransferase immunoreactive neurons in the feline medulla oblongata

Author(s): Reiner PB, Vincent SR

Abstract

The distributions and morphological characteristics of neurons displaying immunoreactivity to the catecholamine synthetic enzymes tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT) were examined in adjacent sections of the feline medulla oblongata. TH-positive neurons were found in two bilaterally symmetrical columns in the ventrolateral and dorsomedial medulla. Within the ventrolateral medulla, TH-positive neurons were found within the lateral reticular formation throughout the entire rostrocaudal extent of the medulla. In the dorsomedial medulla, TH-immunoreactive perikarya were localized to the nucleus of the tractus solitarius including the commissural subnucleus, the dorsal motor nucleus of the vagus, and the area postrema. DBH-positive neurons had distributions and morphologies similar to those of the TH-immunoreactive cells with three exceptions: TH-positive neurons far outnumbered DBH-positive neurons in the area postrema; slightly greater numbers of TH-positive neurons were seen in the commissural nucleus of the tractus solitarius; and, caudal to the obex, only TH-positive neurons were seen within the dorsal motor nucleus of the vagus. PNMT-immunoreactive neurons were found in all the nuclear regions of the medulla where both TH- and DBH-positive neurons were seen. However, the PNMT immunoreactive perikarya had a somewhat more restricted distribution along the rostrocaudal axis. In the ventrolateral medulla, PNMT-positive cells extended rostrally only as far as the retrofacial nucleus and caudally only to the obex. Within the dorsomedial medulla, PNMT immunoreactive cells were found from just rostral to the area postrema to the medullary-spinal cord junction. These findings demonstrate that the distributions of TH, DBH, and PNMT immunoreactive perikarya in the medulla of the cat are generally similar to those seen in the rat insofar as these neurons are arranged in longitudinal columns in both species. However, significant differences exist with regard to the cytoarchitectonic borders within which immunoreactive perikarya can be found and the rostrocaudal extent of the PNMT-positive cell groups in these two species.

Similar Articles

Regional concentrations of noradrenaline and dopamine in rat brain

Author(s): Versteeg DH, Van Der Gugten J, De Jong W, Palkovits M

Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata

Author(s): Kitahama K, Denoroy L, Bérod A, Jouvet M

(1990b) Aromatic L-amino acid decarboxylase immunohistochemistry in the cat lower brainstem and midbrain

Author(s): Kitahama K, Denoyer M, Raynaud B, Borri-Voltattorni C, Weber M, et al

Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human

Author(s): Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, et al.

Catecholamine cell groups of the cat medulla oblongata

Author(s): Blessing WW, Frost P, Furness JB

Monoamine cell distribution in the cat brain stem

Author(s): Wiklund L, Leger L, Persson M

Antisera against small neurotransmitter-like molecules

Author(s): Geffard M, Henrich-Rock AM, Dulluc J, Seguela P

Specific detection of noradrenaline in the rat brain by using antibodies

Author(s): Geffard M, Patel S, Dulluc J, Rock AM

Organelles in fast axonal transport

Author(s): Dahlström AB, Czernik AJ, Li JY

The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei

Author(s): Ritchie TC, Westlund KN, Bowker RM, Coulter JD, Leonard RB

The central adrenergic system

Author(s): Swanson LW, Hartman BK

Distribution of dopamine-immunoreactive fibers in the rat brainstem

Author(s): Kitahama K, Nagatsu I, Geffard M, Maeda T

Distinct monoamine oxidase A and B populations in primate brain

Author(s): Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW

Serotonin and the control of ventilation in awake rats

Author(s): Olson EB, Dempsey JA, McCrimmon DR

Ascending projections from the solitary tract nucleus to the hypothalamus

Author(s): Ter Horst GJ, de Boer P, Luiten PG, van Willigen JD

GTP-cyclohydrolase-I like immunoreactivity in rat brain

Author(s): Dassesse D, Hemmens B, Cuvelier L, Résibois A

Brainstem projections to the phrenic nucleus: an anterograde and retrograde HRP study in the rabbit

Author(s): Ellenberger HH, Vera PL, Haselton JR, Haselton CL, Schneiderman N

Catecholaminergic depressant effects on bulbar respiratory mechanisms

Author(s): Champagnat J, Denavit-Saubié M, Henry JL, Leviel V

Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups

Author(s): Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al.

Delayed increase of tyrosine hydroxylation in the rat A2 medullary neurons upon long-term hypoxia

Author(s): Soulier V, Cottet-Emard JM, Dalmaz Y, Kitahama K, Pequignot JM

CO2-induced c-fos expression in the CNS catecholaminergic neurons

Author(s): Haxhiu MA, Yung K, Erokwu B, Cherniack NS