Therapeutic potential of peroxisome proliferator-activated receptor gamma agonist rosiglitazone in cerebral vasospasm after a rat experimental subarachnoid hemorrhage model

Author(s): Wu Y, Tang K, Huang RQ, Zhuang Z, Cheng HL, et al.

Abstract

The pathogenesis of cerebral vasospasm is closely associated with inflammation and immune response in arterial walls. Recently, the authors proved the key role of Toll-like receptor (TLR)4 in the development of vasospasm in experimental subarachnoid hemorrhage (SAH) model. Because peroxisome proliferator-activated receptor (PPAR) gamma agonists are identified as effective inhibitors of TLR4 activation, we investigated the anti-inflammation properties of PPAR-gamma agonist rosiglitazone in basilar arteries in a rat experimental SAH model and evaluated the effects of rosiglitazone on vasospasm. Inflammatory responses in basilar arteries were assessed by immunohistochemical staining for intercellular molecule (ICAM)-1 and myeloperoxidase (MPO). Expression of TLR4 was determined by western blot analysis. The degree of cerebral vasospasm was evaluated by measuring the mean diameter and cross-sectional area of basilar arteries. Rosiglitazone suppressed the SAH-induced inflammatory responses in basilar arteries by inhibiting the TLR4 signalling. Furthermore, rosiglitazone could attenuate cerebral vasospasm following SAH. Therefore, we suggested that PPAR-gamma agonists may be potential therapeutic agents for cerebral vasospasm.

Similar Articles

Cerebral vasospasm following aneurysmal subarachnoid hemorrhage

Author(s): Kassell NF, Sasaki T, Colohan AR, Nazar G

Altered patterns of gene expression in response to myocardial infarction

Author(s): Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, et al.

Genomics of human intracranial aneurysm wall

Author(s): Shi C, Awad IA, Jafari N, Lin S, Du P, et al.

Bioconductor: open software development for computational biology and bioinformatics

Author(s): Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al.

TM4 microarray software suite

Author(s): Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al.

Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats

Author(s): Suzuki H, Kanamaru K, Tsunoda H, Inada H, Kuroki M, et al.

Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat

Author(s): Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L

Gene expression in a canine basilar artery vasospasm model: a genome-wide network-based analysis

Author(s): Sasahara A, Kasuya H, Krischek B, Tajima A, Onda H, et al.

Global quantification of mammalian gene expression control

Author(s): Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al.

Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage

Author(s): Borel CO, McKee A, Parra A, Haglund MM, Solan A, et al.

Oxidative stress activates STAT1 in basilar arteries after subarachnoid hemorrhage

Author(s): Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Wakabayashi T, et al.

Cerebral artery spasm

Author(s): Hughes JT, Schianchi PM

Stroke: anatomy of a catastrophic event

Author(s): Zhang J, Lewis A, Bernanke D, Zubkov A, Clower B

Neuroprotection by osteopontin in stroke

Author(s): Meller R, Stevens SL, Minami M, Cameron JA, King S, et al.

Expression, roles, receptors, and regulation of osteopontin in the kidney

Author(s): Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, et al.

Apoptosis of endothelial cells in vessels affected by cerebral vasospasm

Author(s): Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J

Morphological changes of cerebral arteries in a canine double hemorrhage model

Author(s): Zubkov AY, Tibbs RE, Clower B, Ogihara K, Aoki K, et al.

Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Yamashita M, Fujiwara S, Zuccarello M

Barrier disruption in the major cerebral arteries during the acute stage after experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Zuccarello M, Nakagomi T, Fijiwara S, et al.

Immune complexes and complement activation following rupture of intracranial saccular aneurysms

Author(s): Ostergaard JR, Kristensen BO, Svehag SE, Teisner B, Miletic T