Up-regulation of parathyroid hormone receptor in cerebral arteries after subarachnoid hemorrhage in monkeys

Author(s): Macdonald RL, Zhang ZD, Ono S, Komuro T

Abstract

Objective:Complementary deoxyribonucleic acid array analysis was used to determine whether vasospasm after subarachnoid hemorrhage (SAH) is associated with changes in gene expression.

Methods:Right SAHs were created in three monkeys, and the right and left middle cerebral arteries were collected 3, 7, or 14 days after SAH. Vasospasm was assessed by angiography performed on Day 0 and at tissue harvest. A complementary deoxyribonucleic acid array containing 5184 genes was used to screen for changes in gene expression by comparing the right and left middle cerebral arteries.

Results:There was significant expression (greater than fivefold expression of messenger ribonucleic acid compared with internal standard control) of 537 genes (10%) in the middle cerebral arteries. One hundred sixty-four genes (31%) did not change significantly, and 373 (69%) were differentially expressed at 3, 7, or 14 days after SAH. These 373 genes changed from 1.2- to 7-fold as compared with control arteries. The most common pattern was a progressive increase with increased time after SAH. The functions of differentially expressed genes included the regulation of gene expression, cell proliferation, inflammation, membrane proteins and receptors, kinases, and phosphatases. There was a marked increase in parathyroid hormone and parathyroid hormone receptor with time after SAH. Immunoblotting demonstrated a significant increase in parathyroid hormone receptor protein.

Conclusion:The up-regulation of these proteins involved in vascular relaxation suggests that they may play a role in vasospasm. The progressive increase in messenger ribonucleic acids involved in the functions noted suggests that the pathogenesis of cerebral vasospasm involves cell proliferation, inflammation, and possibly smooth muscle phenotype change.

Similar Articles

Cerebral vasospasm following aneurysmal subarachnoid hemorrhage

Author(s): Kassell NF, Sasaki T, Colohan AR, Nazar G

Altered patterns of gene expression in response to myocardial infarction

Author(s): Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, et al.

Genomics of human intracranial aneurysm wall

Author(s): Shi C, Awad IA, Jafari N, Lin S, Du P, et al.

Bioconductor: open software development for computational biology and bioinformatics

Author(s): Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al.

TM4 microarray software suite

Author(s): Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al.

Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats

Author(s): Suzuki H, Kanamaru K, Tsunoda H, Inada H, Kuroki M, et al.

Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat

Author(s): Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L

Gene expression in a canine basilar artery vasospasm model: a genome-wide network-based analysis

Author(s): Sasahara A, Kasuya H, Krischek B, Tajima A, Onda H, et al.

Global quantification of mammalian gene expression control

Author(s): Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al.

Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage

Author(s): Borel CO, McKee A, Parra A, Haglund MM, Solan A, et al.

Oxidative stress activates STAT1 in basilar arteries after subarachnoid hemorrhage

Author(s): Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Wakabayashi T, et al.

Cerebral artery spasm

Author(s): Hughes JT, Schianchi PM

Stroke: anatomy of a catastrophic event

Author(s): Zhang J, Lewis A, Bernanke D, Zubkov A, Clower B

Neuroprotection by osteopontin in stroke

Author(s): Meller R, Stevens SL, Minami M, Cameron JA, King S, et al.

Expression, roles, receptors, and regulation of osteopontin in the kidney

Author(s): Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, et al.

Apoptosis of endothelial cells in vessels affected by cerebral vasospasm

Author(s): Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J

Morphological changes of cerebral arteries in a canine double hemorrhage model

Author(s): Zubkov AY, Tibbs RE, Clower B, Ogihara K, Aoki K, et al.

Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Yamashita M, Fujiwara S, Zuccarello M

Barrier disruption in the major cerebral arteries during the acute stage after experimental subarachnoid hemorrhage

Author(s): Sasaki T, Kassell NF, Zuccarello M, Nakagomi T, Fijiwara S, et al.

Immune complexes and complement activation following rupture of intracranial saccular aneurysms

Author(s): Ostergaard JR, Kristensen BO, Svehag SE, Teisner B, Miletic T