Use of perfusion- and diffusion-weighted imaging in differential diagnosis of acute and chronic ischemic stroke and multiple sclerosis

Author(s): Zivadinov R, Bergsland N, Stosic M, Sharma J, Nussenbaum F, et al.


Objective:To investigate differences in lesions and surrounding normal appearing white matter (NAWM) by perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) in patients with acute and chronic ischemic stroke and multiple sclerosis (MS).

Methods:Study subjects included 45 MS patients, 22 patients with acute ischemic stroke and 20 patients with chronic ischemic stroke. All subjects underwent T2-weighted imaging (WI), flair attenuated inversion recovery (FLAIR), DWI and dynamic contrast enhanced PWI. Apparent diffusion coefficient (ADC) and mean transit time (MTT) maps were generated and values were calculated in the acute and chronic ischemic and demyelinating lesions, and in NAWM for distances of 5, 10 and 15 mm. Fifty-three acute ischemic and 33 acute demyelinating lesions, and 775 chronic ischemic and 998 chronic demyelinating lesions, were examined. Univariate, multivariate and data mining analyses were used to examine the feasibility of a prediction model between different lesion types. Correctly and incorrectly classified lesions, true positive (TP), false positive (FP) and precision rates were calculated.

Results:Patients with acute ischemic lesions presented more prolonged mean MTT values in lesions (p=0.002) and surrounding NAWM for distances of 5, 10 and 15 mm (all p<0.0001) than those with acute demyelinating lesions. In multinomial logistic regression analysis, 65 of 86 acute lesions were correctly classified (75.6%). The TP rates were 81.1% for acute ischemic lesions and 66.7% for acute demyelinating lesions. The FP rates were 33.3% for acute ischemic and 18.9% for acute demyelinating lesions. The precision was 79.6% for classification of acute ischemic lesions and 68.8% for prediction of acute demyelinating lesions. The logistic model tree decision algorithm revealed that prolonged MTT of surrounding NAWM for a distance of 15 mm (> or =7459.2 ms) was the best classifier of acute ischemic versus acute demyelinating lesions. Patients with chronic ischemic lesions presented higher mean ADC (p<0.0001) and prolonged MTT (p=0.013) in lesions, and in surrounding NAWM for distances of 5, 10 and 15 mm (all p<0.0001), compared to the patients with chronic demyelinating lesions. Data mining analyses did not show reliable predictability for correctly discerning between chronic ischemic and chronic demyelinating lesions. The precision was 56.7% for classification of chronic ischemic and 58.9% for prediction of chronic demyelinating lesions.

Discussion:We found prolonged MTT values in lesions and surrounding NAWM of patients with acute and chronic ischemic stroke when compared to MS patients. The use of PWI is a promising tool for differential diagnosis between acute ischemic and acute demyelinating lesions. The results of this study contribute to a better understanding of the extent of hemodynamic abnormalities in lesions and surrounding NAWM in patients with MS.

Similar Articles

Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study

Author(s): Wuerfel J, Bellmann-Strobl J, Brunecker P, Aktas O, McFarland H, et al.

Axonal transection in the lesions of multiple sclerosis

Author(s): Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, et al.

Magnetic resonance frequency shifts during acute MS lesion formation

Author(s): Wiggermann V, Hernández Torres E, Vavasour IM, Moore GR, Laule C, et al.

Weekly diffusion-weighted imaging of normal-appearing white matter in MS

Author(s): Rocca MA, Cercignani M, Iannucci G, Comi G, Filippi M

Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis

Author(s): van Walderveen MA, Kamphorst W, Scheltens P, van Waesberghe JH, Ravid R, et al.

MRI in multiple sclerosis: current status and future prospects

Author(s): Bakshi R, Thompson AJ, Rocca MA, Pelletier D, Dousset V, et al.

Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T

Author(s): Ingrisch M, Sourbron S, Morhard D, Ertl-Wagner B, Kümpfel T, et al.

Diffusion tensor magnetic resonance imaging in multiple sclerosis

Author(s): Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G

Hypoperfusion and T1-hypointense lesions in white matter in multiple sclerosis

Author(s): Narayana PA, Zhou Y, Hasan KM, Datta S, Sun X, et al.

White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis

Author(s): Varga AW, Johnson G, Babb JS, Herbert J, Grossman RI, et al.

Brain atrophy: an in-vivo measure of disease activity in multiple sclerosis

Author(s): Radü EW, Bendfeldt K, Mueller-Lenke N, Magon S, Sprenger T

Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria"

Author(s): Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, et al.

Clinical correlations of brain lesion distribution in multiple sclerosis

Author(s): Vellinga MM, Geurts JJ, Rostrup E, Uitdehaag BM, Polman CH, et al.

Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR

Author(s): van Waesberghe JH, van Walderveen MA, Castelijns JA, Scheltens P, Lycklama à Nijeholt GJ, et al.

Measuring myelin repair and axonal loss with diffusion tensor imaging

Author(s): Fox RJ, Cronin T, Lin J, Wang X, Sakaie K, et al.

Imaging axonal damage of normal-appearing white matter in multiple sclerosis

Author(s): Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, et al.

T1 lesion load and cerebral atrophy as a marker for clinical progression in patients with multiple sclerosis

Author(s): Sailer M, Losseff NA, Wang L, Gawne-Cain ML, Thompson AJ, et al.

Secondary progressive multiple sclerosis: the relationship between short-term MRI activity and clinical features

Author(s): Tubridy N, Coles AJ, Molyneux P, Compston DA, Barkhof F, et al.

Predicting gadolinium enhancement status in MS patients eligible for randomized clinical trials

Author(s): Barkhof F, Held U, Simon JH, Daumer M, Fazekas F, et al.

Poor PASAT performance correlates with MRI contrast enhancement in multiple sclerosis

Author(s): Bellmann-Strobl J, Wuerfel J, Aktas O, Dörr J, Wernecke KD, et al.