Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women

Author(s): Cardoso AM, Bagatini MD, Roth MA, Martins CC, Rezer JF, et al.

Abstract

The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.

Similar Articles

Global recommendations on physical activity for health

Author(s): World Health Organization (WHO)

Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice

Author(s): Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, et al.

Therapeutic action of physical exercise on markers of oxidative stress induced by chronic kidney disease

Author(s): de Souza PS, da Rocha LG, Tromm CB, Scheffer DL, Victor EG, et al.

Increases of kinin B1 and B2 receptors binding sites after brain infusion of amyloid-beta 1-40 peptide in rats

Author(s): Viel TA, Caetano AL, Nasello AG, Lancelotti CL, Nunes VA, et al.

Change in central kinin B2 receptor density after exercise training in rats

Author(s): Caetano AL, Viel TA, Bittencourt MF, Araujo MS, De Angelis K, et al.

Free radicals and oxidative stress in exercise--immunological aspects

Author(s): Niess AM, Dickhuth HH, Northoff H, Fehrenbach E

Exercise, free radicals and oxidative stress

Author(s): Cooper CE, Vollaard NB, Choueiri T, Wilson MT

Intensity-controlled treadmill running in rats: VO(2 max) and cardiac hypertrophy

Author(s): Wisløff U, Helgerud J, Kemi OJ, Ellingsen O

Molecular pharmacological dissection of short- and long-term memory

Author(s): Izquierdo LA, Barros DM, Vianna MR, Coitinho A, deDavid e Silva T, et al.

Treadmill Running Reverses Cognitive Declines due to Alzheimer Disease

Author(s): Cho J, Shin MK, Kim D, Lee I, Kim S, et al.

Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks

Author(s): Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W