Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors

Author(s): Zhang X, Wang F, Chen X, Li J, Xiang B, et al.

Abstract

Beta-arrestins are key negative regulators and scaffolds of G protein-coupled receptor (GPCR) signalling. Beta-arrestin1 and beta-arrestin2 preferentially bind to the phosphorylated GPCRs in response to agonist stimulation, resulting in receptor internalization and desensitization. The critical roles of GPCR kinases (GRKs)-catalyzed receptor phosphorylation and interaction of beta-arrestins with the phosphorylated receptor in receptor internalization are well established. However, emerging evidence suggests that an agonist-stimulated internalization mechanism that is independent of receptor phosphorylation may also be employed in some cases, although the molecular mechanism for the phosphorylation-independent GPCR internalization is not clear. The current study investigated the role of receptor phosphorylation and the involvement of different beta-arrestin subtypes in agonist-induced delta-opioid receptor (DOR) internalization in HEK293 cells. Results from flow cytometry, fluorescence microscopy, and surface biotin labelling experiments showed that elimination of agonist-induced DOR phosphorylation by mutation GRK binding or phosphorylation sites only partially blocked agonist-induced receptor internalization, indicating the presence of an agonist-induced, GRK-independent mechanism for DOR internalization. Fluorescence and co-immunoprecipitation studies indicated that both the wild-type DOR and the phosphorylation-deficient mutant receptor could bind and recruit beta-arrestin1 and beta-arrestin2 to the plasma membrane in an agonist-stimulated manner. Furthermore, internalization of both the wild-type and phosphorylation-deficient receptors was increased by overexpression of either type of beta-arrestins and blocked by dominant-negative mutants of beta-arrestin-mediated internalization, demonstrating that both phosphorylation-dependent and -independent internalization require beta-arrestin. Moreover, double-stranded RNA-mediated interference experiments showed that either beta-arrestin1 or beta-arrestin2 subtype-specific RNAi only partially inhibited agonist-induced internalization of the wild-type DOR. However, agonist-induced internalization of the phosphorylation-deficient DOR was not affected by beta-arrestin1-specific RNAi but was blocked by RNAi against beta-arrestin2 subtype. These data indicate that endogenous beta-arrestin1 functions exclusively in the phosphorylation-dependent receptor internalization, whereas endogenous beta-arrestin2, but not beta-arrestin1, is required for the phosphorylation-independent receptor internalization. These results thus provide the first evidence of different requirement for beta-arrestin isoforms in the agonist induced phosphorylation-dependent and -independent GPCR internalization.

Similar Articles

Enhanced morphine analgesia in mice lacking beta-arrestin 2

Author(s): Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, et al.

Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence

Author(s): Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG, et al.

Ligand-directed signalling within the opioid receptor family

Author(s): Pradhan AA, Smith ML, Kieffer BL, Evans CJ

μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization

Author(s): McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, et al.

Morphine-like opiates selectively antagonize receptor-arrestin interactions

Author(s): Molinari P, Vezzi V, Sbraccia M, Grò C, Riitano D, et al.

Pharmacological characterization of AR-M1000390 at human delta opioid receptors

Author(s): Marie N, Landemore G, Debout C, Jauzac P, Allouche S

SK-N-BE: a human neuroblastoma cell line containing two subtypes of delta-opioid receptors

Author(s): Polastron J, Mur M, Mazarguil H, Puget A, Meunier JC, et al.

ßarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands

Author(s): Aguila B, Coulbault L, Davis A, Marie N, Hasbi A, et al.

Molecular control of δ-opioid receptor signalling

Author(s): Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, et al.

Development and validation of a genetic algorithm for flexible docking

Author(s): Jones G, Willett P, Glen RC, Leach AR, Taylor R, et al.

Agonist-selective mechanisms of GPCR desensitization

Author(s): Kelly E, Bailey CP, Henderson G

Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone

Author(s): Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT

Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes

Author(s): Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al.