*{display: flex;flex-basis: 240px;flex-direction: column;flex-grow: 1;flex-shrink: 1;margin: 0.5px; } .sprcom-buybox-articleSidebar > *{box-shadow: 0 0 0 1px rgba(204,204,204,0.494); } .sprcom-buybox-articleSidebar .c-box__body{display: flex;flex-direction: column-reverse;flex-grow: 1;justify-content: space-between;padding: 6%; } .sprcom-buybox-articleSidebar .c-box__body .buybox__buy{display: flex;flex-direction: column-reverse; } .sprcom-buybox-articleSidebar p{color: #333;font-size: 15px; } .sprcom-buybox-articleSidebar .buybox__price{font-size: 24px;font-weight: 500;line-height: calc(100% + 8px);margin: 20px 0;order: 1; } .sprcom-buybox-articleSidebar form{order: 1; } .sprcom-buybox-articleSidebar .buybox__price-info{margin-bottom: 20px; } .sprcom-buybox-articleSidebar .c-box__heading{background-color: #f0f0f0;color: #333;font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen-Sans, Ubuntu, Cantarell, 'Helvetica Neue', sans-serif;font-size: 16px;margin: 0px;padding: 10px 12px;text-align: center; } .sprcom-buybox-articleSidebar .c-box__button{background-color: #3365A4;border: 1px solid transparent;border-radius: 2px;color: #fff;cursor: pointer;display: inline-block;font-family: inherit;font-size: 16px;max-width: 222px;padding: 10px 12px;text-decoration: none;width: 100%; } .sprcom-buybox-articleSidebar h3{clip: rect(1px, 1px, 1px, 1px);height: 1px;overflow: hidden;position: absolute;width: 1px; } .sprcom-buybox-articleSidebar h2{flex-basis: 100%;margin-bottom: 16px;text-align: left; } .sprcom-buybox-articleSidebar .buybox__institutional-sub, .buybox__rent-article .c-box__body{flex-direction: row; } .sprcom-buybox-articleSidebar .buybox__institutional-sub, .buybox__rent-article .buybox__info{text-align: left; } .sprcom-buybox-articleSidebar .buybox__institutional-sub{background-color: #f0f0f0; } .sprcom-buybox-articleSidebar .visually-hidden{clip: rect(1px, 1px, 1px, 1px);height: 1px;overflow: hidden;position: absolute;width: 1px; } .sprcom-buybox-articleSidebar style{display: none; } ;(function () { var timestamp = Date.now() document.write('') var head = document.getElementsByTagName("head")[0] var script = document.createElement("script") script.type = "text/javascript" script.src = "https://buy.springer.com/assets/js/buybox-bundle-abe5f44a67.js" script.id = "ecommerce-scripts-" + timestamp head.appendChild(script) var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(init) function init(buyingOption, index) { var form = buyingOption.querySelector("form") if (form) { var formAction = form.getAttribute("action") document.querySelector("#ecommerce-scripts-" + timestamp).addEventListener("load", bindModal(form, formAction, timestamp, index), false) } } function bindModal(form, formAction, timestamp, index) { var weHasBrowserSupport = window.fetch && Array.from return function() { console.log("ecommerce-scripts loaded, attempting to init modal …") var Buybox = EcommScripts ? EcommScripts.Buybox : null var Modal = EcommScripts ? EcommScripts.Modal : null if (weHasBrowserSupport && Buybox && Modal) { var modalID = "ecomm-modal_" + timestamp + "_" + index var modal = new Modal(modalID) modal.domEl.addEventListener("close", close) function close() { form.querySelector("button[type=submit]").focus() } var cartURL = "/cart" var cartModalURL = "/cart?messageOnly=1" form.setAttribute( "action", formAction.replace(cartURL, cartModalURL) ) var formSubmit = Buybox.interceptFormSubmit( Buybox.fetchFormAction(window.fetch), Buybox.triggerModalAfterAddToCartSuccess(modal), function() { form.removeEventListener("submit", formSubmit, false) form.setAttribute( "action", formAction.replace(cartModalURL, cartURL) ) form.submit() } ) form.addEventListener("submit", formSubmit, false) document.body.appendChild(modal.domEl) } else { console.log("binding failed:", weHasBrowserSupport, EcommScripts) } } } })() Fig. 1Fig. 2Fig. 3Fig. 4 ReferencesAbemayor E, Sidell N (1989) Human neuroblastoma cell lines as models for the in vitro study of neoplastic and neuronal cell differentiation. Environ Health Perspect 80:3–15Article CAS Google Scholar Baxter GT, Radeke MJ, Kuo RC, Makrides V, Hinkle B, Hoang R, Medina-Selby A, Coit D, Valenzuela P, Feinstein SC (1997) Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 17:2683–2690CAS Google Scholar Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. Embo J 18:616–622Article CAS Google Scholar Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253Article CAS Google Scholar Chao MV, Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18:321–326Article CAS Google Scholar Choi-Kwon S, Park KA, Lee HJ, Park MS, Lee JH, Jeon SE, Choe MA, Park KC (2004) Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil. Brain Res Dev Brain Res 152:11–18Article Google Scholar Eide FF, Vining ER, Eide BL, Zang K, Wang XY, Reichardt LF (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129CAS Google Scholar Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Ceña V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75:991–1003Article CAS Google Scholar Grant WB (1999) Dietary links to Alzheimer’s disease: 1999 update. J Alzheimers Dis 1:197–201CAS Google Scholar Haapasalo A, Sipola I, Larsson K, Akerman KE, Stoilov P, Stamm S, Wong G, Castren E (2002) Regulation of TRKB surface expression by brain-derived neurotrophic factor and truncated TRKB isoforms. J Biol Chem 277:43160–43167Article CAS Google Scholar Hartmann H, Busciglio J, Baumann KH, Staufenbiel M, Yankner BA (1997) Developmental regulation of presenilin-1 processing in the brain suggests a role in neuronal differentiation. J Biol Chem 272:14505–14508Article CAS Google Scholar Holback S, Adlerz L, Iverfeldt K (2005) Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid-differentiated human neuroblastoma cells. J Neurochem 95:1059–1068Article CAS Google Scholar Jalava A, Heikkilä J, Lintunen M, Akerman K, Påhlman S (1992) Staurosporine induces a neuronal phenotype in SH-SY5Y human neuroblastoma cells that resembles that induced by the phorbol ester 12-O-tetradecanoyl phorbol-13 acetate (TPA). FEBS Lett 300:114–118Article CAS Google Scholar Jamsa A, Hasslund K, Cowburn RF, Backstrom A, Vasange M (2004) The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer’s disease-like tau phosphorylation. Biochem Biophys Res Commun 319:993–1000Article CAS Google Scholar Kalmijn S, Feskens EJ, Launer LJ, Kromhout D (1997) Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am J Epidemiol 145:33–41CAS Google Scholar Kaplan DR, Matsumoto K, Lucarelli E, Thiele CJ (1993) Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron 11:321–331Article CAS Google Scholar Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391Article CAS Google Scholar Kaplan DR, Miller FD (1997) Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9:213–221Article CAS Google Scholar Klein R, Conway D, Parada LF, Barbacid M (1990) The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61:647–656Article CAS Google Scholar Kremer JM, Jubiz W, Michalek A, Rynes RI, Bartholomew LE, Bigaouette J, Timchalk M, Beeler D, Lininger L (1987) Fish-oil fatty acid supplementation in active rheumatoid arthritis. A double-blinded, controlled, crossover study. Ann Intern Med 106:497–503CAS Google Scholar Li YP, Bushnell AF, Lee CM, Perlmutter LS, Wong SK (1996) Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Res 738:196–204Article CAS Google Scholar Lonergan PE, Martin DS, Horrobin DF, Lynch MA (2004) Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J Neurochem 91:20–29Article CAS Google Scholar Martin DS, Lonergan PE, Boland B, Fogarty MP, Brady M, Horrobin DF, Campbell VA, Lynch MA (2002) Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem 277:34239–34246Article CAS Google Scholar Mehta JL, Lopez LM, Lawson D, Wargovich TJ, Williams LL (1988) Dietary supplementation with omega-3 polyunsaturated fatty acids in patients with stable coronary heart disease. Effects on indices of platelet and neutrophil function and exercise performance. Am J Med 84:45–52Article CAS Google Scholar Meldolesi J, Sciorati C, Clementi E (2000) The p75 receptor: first insights into the transduction mechanisms leading to either cell death or survival. Trends Pharmacol Sci 21:242–243Article CAS Google Scholar Middlemas DS, Lindberg RA, Hunter T (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol Cell Biol 11:143–153CAS Google Scholar Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 58:1045–1053Article CAS Google Scholar Ohira K, Hayashi M (2003) Expression of TrkB subtypes in the adult monkey cerebellar cortex. J Chem Neuroanat 25:175–183Article CAS Google Scholar Påhlman S, Hoehner JC, Nånberg E, Hedborg F, Fagerström S, Gestblom C, Johansson I, Larsson U, Lavenius E, Ortoft E (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer 31A:453–458Article Google Scholar Peraus GC, Masters CL, Beyreuther K (1997) Late compartments of amyloid precursor protein transport in SY5Y cells are involved in beta-amyloid secretion. J Neurosci 17:7714–7724CAS Google Scholar Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, Konnerth A (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426:74–78Article CAS Google Scholar Sheehan JP, Palmer PE, Helm GA, Tuttle JB (1997) MPP+ induced apoptotic cell death in SH-SY5Y neuroblastoma cells: an electron microscope study. J Neurosci Res 48:226–237Article CAS Google Scholar Song C, Horrobin D (2004) Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1beta administration. J Lipid Res 45:1112–1121Article CAS Google Scholar Song C, Li X, Leonard BE, Horrobin DF (2003) Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress, and inflammatory responses in rats. J Lipid Res 44:1984–1991Article CAS Google Scholar Stoilov P, Castren E, Stamm S (2002) Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun 290:1054–1065Article CAS Google Scholar Yehuda S, Rabinovtz S, Carasso RL, Mostofsky DI (1996) Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life. Int J Neurosci 87:141–149Article CAS Google Scholar Download referencesAcknowledgmentsThis work was supported by grant from Canadian Institute of Health Research (CIHR) to C. Song and Industry-partnered postdoctoral fellowship from CIHR to W. Kou. We would like to thank Amarin Neuroscience Ltd for providing financial support and Dr. Michael Mayne for providing research facilities at NRC-INH for this study. Technical assistance provided by Mr. Di Shao, Ms. Charlene Supnet and Mr. Jeff Grant is appreciated.Author informationAuthors and AffiliationsDept. of Biomedical Sciences, AVC, University of Prince Edward Island and NRC Institute for Nutrisciences and Health, Charlottetown, PE, CanadaWei Kou, Dirk Luchtman & Cai Song MD, PhDAuthorsWei KouView author publicationsYou can also search for this author in PubMed Google ScholarDirk LuchtmanView author publicationsYou can also search for this author in PubMed Google ScholarCai Song MD, PhDView author publicationsYou can also search for this author in PubMed Google ScholarCorresponding authorCorrespondence to Cai Song MD, PhD.Rights and permissionsReprints and PermissionsAbout this articleCite this articleKou, W., Luchtman, D. & Song, C. Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells. Eur J Nutr 47, 104–113 (2008). https://doi.org/10.1007/s00394-008-0703-1Download citationReceived: 13 June 2007Accepted: 05 March 2008Published: 23 March 2008Issue Date: March 2008DOI: https://doi.org/10.1007/s00394-008-0703-1">

Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells

Author(s): Kou W, Luchtman D, Song C

Abstract

Background

The n-3 polyunsaturated fatty acid, eicosapentaenoic acid (EPA) has been found to process neuroprotective effects. However, the exact cellular mechanisms are not well understood. Brain-derived neurotrophic factor (BDNF) is one of neurotrophins, which is involved in neuron differentiation, survival, and synaptogenesis.

Aim of the study

In this study, the potential neuroprotective effects of EPA, and its possible effects on BDNF and BDNF receptor expression were investigated in SH-SY5Y cells.

Methods

Both undifferentiated and retinoic acid (RA)-BDNF differentiated SH-SY5Y cells were treated with EPA and/or BDNF. The cell viability was determined by MTT assay. The expression of BDNF receptors, tyrosine kinase receptor B (TrkB) and p75NTR were tested by RT-PCR and Western blotting.

Results

In undifferentiated SH-SY5Y cells, either EPA or BDNF, or both did not affect the cell viability. In RA-BDNF differentiated SH-SY5Y cells, treatment with different doses of EPA (0.01, 0.1, 1.0, 10.0 µM) and BDNF (1 ng/ml) for 24 hours significantly increased the cell viability, while EPA or BDNF alone showed no effect. More importantly, RT-PCR and Western blotting results revealed that 24 hours treatment with EPA (0.01, 0.1, 1.0 µM) significantly increased the full-length TrkB (TrkBTK+), but not truncated TrkB (TrkBTK−) expression in these cells. An increase in p75NTR expression was also observed with 10.0 µM EPA treatment. Finally, co-incubation with either 100 nM staurosporine, a protein kinase inhibitor, or 500 nM K252a, a tyrosine kinase inhibitor completely abolished the EPA-induced increase in cell viability.

Conclusions

Our results indicate that EPA exerts beneficial effects on cell survival through modulating neurotrophin receptor expression.

This is a preview of subscription content, access via your institution.

Access optionsBuy single article

Instant access to the full article PDF.

39,95 €

Price includes VAT (India)

dataLayer.push({"ecommerce":{"currency":"EUR","impressions":[{"name":"Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells","id":"1436-6215","price":39.95,"brand":"D. Steinkopff-Verlag","category":"Chemistry","variant":"ppv-article","quantity":1}]}});

Rent this article via DeepDyve.

function deepDyveResponse(data) { if (data.status === 'ok') { [].slice.call(document.querySelectorAll('.c-box.buybox__rent-article')).forEach(function (article) { article.style.display = 'flex' var link = article.querySelector('.deepdyve-link') if (link) { link.setAttribute('href', data.url) } }) } } var script = document.createElement('script') script.src = '//www.deepdyve.com/rental-link?docId=10.1007/s00394-008-0703-1&journal=1436-6215&fieldName=journal_doi&affiliateId=springer&format=jsonp&callback=deepDyveResponse' document.body.appendChild(script)

Learn more about Institutional subscriptions

.sprcom-buybox-articleSidebar{box-shadow: 0px 0px 5px rgba(51,51,51,0.101);display: flex;flex-wrap: wrap;font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen-Sans, Ubuntu, Cantarell, 'Helvetica Neue', sans-serif;text-align: center; } .sprcom-buybox-articleSidebar *{box-sizing: border-box;line-height: calc(100% + 4px);margin: 0px; } .sprcom-buybox-articleSidebar > *{display: flex;flex-basis: 240px;flex-direction: column;flex-grow: 1;flex-shrink: 1;margin: 0.5px; } .sprcom-buybox-articleSidebar > *{box-shadow: 0 0 0 1px rgba(204,204,204,0.494); } .sprcom-buybox-articleSidebar .c-box__body{display: flex;flex-direction: column-reverse;flex-grow: 1;justify-content: space-between;padding: 6%; } .sprcom-buybox-articleSidebar .c-box__body .buybox__buy{display: flex;flex-direction: column-reverse; } .sprcom-buybox-articleSidebar p{color: #333;font-size: 15px; } .sprcom-buybox-articleSidebar .buybox__price{font-size: 24px;font-weight: 500;line-height: calc(100% + 8px);margin: 20px 0;order: 1; } .sprcom-buybox-articleSidebar form{order: 1; } .sprcom-buybox-articleSidebar .buybox__price-info{margin-bottom: 20px; } .sprcom-buybox-articleSidebar .c-box__heading{background-color: #f0f0f0;color: #333;font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen-Sans, Ubuntu, Cantarell, 'Helvetica Neue', sans-serif;font-size: 16px;margin: 0px;padding: 10px 12px;text-align: center; } .sprcom-buybox-articleSidebar .c-box__button{background-color: #3365A4;border: 1px solid transparent;border-radius: 2px;color: #fff;cursor: pointer;display: inline-block;font-family: inherit;font-size: 16px;max-width: 222px;padding: 10px 12px;text-decoration: none;width: 100%; } .sprcom-buybox-articleSidebar h3{clip: rect(1px, 1px, 1px, 1px);height: 1px;overflow: hidden;position: absolute;width: 1px; } .sprcom-buybox-articleSidebar h2{flex-basis: 100%;margin-bottom: 16px;text-align: left; } .sprcom-buybox-articleSidebar .buybox__institutional-sub, .buybox__rent-article .c-box__body{flex-direction: row; } .sprcom-buybox-articleSidebar .buybox__institutional-sub, .buybox__rent-article .buybox__info{text-align: left; } .sprcom-buybox-articleSidebar .buybox__institutional-sub{background-color: #f0f0f0; } .sprcom-buybox-articleSidebar .visually-hidden{clip: rect(1px, 1px, 1px, 1px);height: 1px;overflow: hidden;position: absolute;width: 1px; } .sprcom-buybox-articleSidebar style{display: none; } ;(function () { var timestamp = Date.now() document.write('') var head = document.getElementsByTagName("head")[0] var script = document.createElement("script") script.type = "text/javascript" script.src = "https://buy.springer.com/assets/js/buybox-bundle-abe5f44a67.js" script.id = "ecommerce-scripts-" + timestamp head.appendChild(script) var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(init) function init(buyingOption, index) { var form = buyingOption.querySelector("form") if (form) { var formAction = form.getAttribute("action") document.querySelector("#ecommerce-scripts-" + timestamp).addEventListener("load", bindModal(form, formAction, timestamp, index), false) } } function bindModal(form, formAction, timestamp, index) { var weHasBrowserSupport = window.fetch && Array.from return function() { console.log("ecommerce-scripts loaded, attempting to init modal …") var Buybox = EcommScripts ? EcommScripts.Buybox : null var Modal = EcommScripts ? EcommScripts.Modal : null if (weHasBrowserSupport && Buybox && Modal) { var modalID = "ecomm-modal_" + timestamp + "_" + index var modal = new Modal(modalID) modal.domEl.addEventListener("close", close) function close() { form.querySelector("button[type=submit]").focus() } var cartURL = "/cart" var cartModalURL = "/cart?messageOnly=1" form.setAttribute( "action", formAction.replace(cartURL, cartModalURL) ) var formSubmit = Buybox.interceptFormSubmit( Buybox.fetchFormAction(window.fetch), Buybox.triggerModalAfterAddToCartSuccess(modal), function() { form.removeEventListener("submit", formSubmit, false) form.setAttribute( "action", formAction.replace(cartModalURL, cartURL) ) form.submit() } ) form.addEventListener("submit", formSubmit, false) document.body.appendChild(modal.domEl) } else { console.log("binding failed:", weHasBrowserSupport, EcommScripts) } } } })() Fig. 1Fig. 2Fig. 3Fig. 4 References

Abemayor E, Sidell N (1989) Human neuroblastoma cell lines as models for the in vitro study of neoplastic and neuronal cell differentiation. Environ Health Perspect 80:3–15

Article CAS Google Scholar

Baxter GT, Radeke MJ, Kuo RC, Makrides V, Hinkle B, Hoang R, Medina-Selby A, Coit D, Valenzuela P, Feinstein SC (1997) Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 17:2683–2690

CAS Google Scholar

Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. Embo J 18:616–622

Article CAS Google Scholar

Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253

Article CAS Google Scholar

Chao MV, Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18:321–326

Article CAS Google Scholar

Choi-Kwon S, Park KA, Lee HJ, Park MS, Lee JH, Jeon SE, Choe MA, Park KC (2004) Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil. Brain Res Dev Brain Res 152:11–18

Article Google Scholar

Eide FF, Vining ER, Eide BL, Zang K, Wang XY, Reichardt LF (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129

CAS Google Scholar

Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Ceña V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75:991–1003

Article CAS Google Scholar

Grant WB (1999) Dietary links to Alzheimer’s disease: 1999 update. J Alzheimers Dis 1:197–201

CAS Google Scholar

Haapasalo A, Sipola I, Larsson K, Akerman KE, Stoilov P, Stamm S, Wong G, Castren E (2002) Regulation of TRKB surface expression by brain-derived neurotrophic factor and truncated TRKB isoforms. J Biol Chem 277:43160–43167

Article CAS Google Scholar

Hartmann H, Busciglio J, Baumann KH, Staufenbiel M, Yankner BA (1997) Developmental regulation of presenilin-1 processing in the brain suggests a role in neuronal differentiation. J Biol Chem 272:14505–14508

Article CAS Google Scholar

Holback S, Adlerz L, Iverfeldt K (2005) Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid-differentiated human neuroblastoma cells. J Neurochem 95:1059–1068

Article CAS Google Scholar

Jalava A, Heikkilä J, Lintunen M, Akerman K, Påhlman S (1992) Staurosporine induces a neuronal phenotype in SH-SY5Y human neuroblastoma cells that resembles that induced by the phorbol ester 12-O-tetradecanoyl phorbol-13 acetate (TPA). FEBS Lett 300:114–118

Article CAS Google Scholar

Jamsa A, Hasslund K, Cowburn RF, Backstrom A, Vasange M (2004) The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer’s disease-like tau phosphorylation. Biochem Biophys Res Commun 319:993–1000

Article CAS Google Scholar

Kalmijn S, Feskens EJ, Launer LJ, Kromhout D (1997) Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am J Epidemiol 145:33–41

CAS Google Scholar

Kaplan DR, Matsumoto K, Lucarelli E, Thiele CJ (1993) Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron 11:321–331

Article CAS Google Scholar

Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

Article CAS Google Scholar

Kaplan DR, Miller FD (1997) Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9:213–221

Article CAS Google Scholar

Klein R, Conway D, Parada LF, Barbacid M (1990) The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61:647–656

Article CAS Google Scholar

Kremer JM, Jubiz W, Michalek A, Rynes RI, Bartholomew LE, Bigaouette J, Timchalk M, Beeler D, Lininger L (1987) Fish-oil fatty acid supplementation in active rheumatoid arthritis. A double-blinded, controlled, crossover study. Ann Intern Med 106:497–503

CAS Google Scholar

Li YP, Bushnell AF, Lee CM, Perlmutter LS, Wong SK (1996) Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Res 738:196–204

Article CAS Google Scholar

Lonergan PE, Martin DS, Horrobin DF, Lynch MA (2004) Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J Neurochem 91:20–29

Article CAS Google Scholar

Martin DS, Lonergan PE, Boland B, Fogarty MP, Brady M, Horrobin DF, Campbell VA, Lynch MA (2002) Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem 277:34239–34246

Article CAS Google Scholar

Mehta JL, Lopez LM, Lawson D, Wargovich TJ, Williams LL (1988) Dietary supplementation with omega-3 polyunsaturated fatty acids in patients with stable coronary heart disease. Effects on indices of platelet and neutrophil function and exercise performance. Am J Med 84:45–52

Article CAS Google Scholar

Meldolesi J, Sciorati C, Clementi E (2000) The p75 receptor: first insights into the transduction mechanisms leading to either cell death or survival. Trends Pharmacol Sci 21:242–243

Article CAS Google Scholar

Middlemas DS, Lindberg RA, Hunter T (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol Cell Biol 11:143–153

CAS Google Scholar

Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 58:1045–1053

Article CAS Google Scholar

Ohira K, Hayashi M (2003) Expression of TrkB subtypes in the adult monkey cerebellar cortex. J Chem Neuroanat 25:175–183

Article CAS Google Scholar

Påhlman S, Hoehner JC, Nånberg E, Hedborg F, Fagerström S, Gestblom C, Johansson I, Larsson U, Lavenius E, Ortoft E (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer 31A:453–458

Article Google Scholar

Peraus GC, Masters CL, Beyreuther K (1997) Late compartments of amyloid precursor protein transport in SY5Y cells are involved in beta-amyloid secretion. J Neurosci 17:7714–7724

CAS Google Scholar

Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, Konnerth A (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426:74–78

Article CAS Google Scholar

Sheehan JP, Palmer PE, Helm GA, Tuttle JB (1997) MPP+ induced apoptotic cell death in SH-SY5Y neuroblastoma cells: an electron microscope study. J Neurosci Res 48:226–237

Article CAS Google Scholar

Song C, Horrobin D (2004) Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1beta administration. J Lipid Res 45:1112–1121

Article CAS Google Scholar

Song C, Li X, Leonard BE, Horrobin DF (2003) Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress, and inflammatory responses in rats. J Lipid Res 44:1984–1991

Article CAS Google Scholar

Stoilov P, Castren E, Stamm S (2002) Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun 290:1054–1065

Article CAS Google Scholar

Yehuda S, Rabinovtz S, Carasso RL, Mostofsky DI (1996) Essential fatty acids preparation (SR-3) improves Alzheimer’s patients quality of life. Int J Neurosci 87:141–149

Article CAS Google Scholar

Download references

Acknowledgments

This work was supported by grant from Canadian Institute of Health Research (CIHR) to C. Song and Industry-partnered postdoctoral fellowship from CIHR to W. Kou. We would like to thank Amarin Neuroscience Ltd for providing financial support and Dr. Michael Mayne for providing research facilities at NRC-INH for this study. Technical assistance provided by Mr. Di Shao, Ms. Charlene Supnet and Mr. Jeff Grant is appreciated.

Author informationAuthors and AffiliationsAuthorsWei KouView author publicationsDirk LuchtmanView author publicationsCai Song MD, PhDView author publicationsCorresponding author

Correspondence to Cai Song MD, PhD.

Rights and permissions

Reprints and Permissions

About this articleCite this article

Kou, W., Luchtman, D. & Song, C. Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells. Eur J Nutr 47, 104–113 (2008). https://doi.org/10.1007/s00394-008-0703-1

Download citation

Received: 13 June 2007

Accepted: 05 March 2008

Published: 23 March 2008

Issue Date: March 2008

DOI: https://doi.org/10.1007/s00394-008-0703-1

Similar Articles

Fish Oil Feeding Up-Regulates the Expression of 5-Aminolevulinate Synthase 2 mRNA in Rat Brain

Author(s): Haraguchi T, Yanaka N, Eguchi Y, Kudo T, Hirata A, et al.

Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice

Author(s): Tian C, Kim YH, Kim YC, Park KT, Kim SW, et al.

Docosahexaenoic acid withstands the Aβ(25-35)-induced neurotoxicity in SH-SY5Y cells

Author(s): Hashimoto M, Katakura M, Hossain S, Rahman A, Shimada T, et al.

Determination of carbonyl content in oxidatively modified proteins

Author(s): Levine RL, Garland D, Oliver CN, Amici A, Climent I, et al.

Catalase in vitro

Author(s): Aebi H

Glutathione transferase from rat testis

Author(s): Guthenberg C, Alin P, Mannervik B

Assays of glutathione peroxidase

Author(s): Flohé L, Günzler WA

A new and rapid colorimetric determination of acetylcholinesterase activity

Author(s): Ellman GL, Courtney KD, Andres V, Feather-Stone RM

Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate

Author(s): Dalpiaz A, Filosa R, de Caprariis P, Conte G, BortolottiF, et al.

Biochemistry of dystrophic muscle

Author(s): Pennington RJ

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randall RJ

Pro- and antioxidant activities of docosahexaenoic acid on human blood platelets

Author(s): Véricel E, Polette A, Bacot S, Calzada C, Lagarde M, et al.

Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics

Author(s): Dalle-Donne I, Scaloni A, Giustarini D,Cavarra E, Tell G, et al.

Protein oxidation and aging

Author(s): Stadtman ER

Reduced protein oxidation in Wistar rats supplemented with marine ω3 PUFAs

Author(s): Méndez L, Pazos M, Gallardo JM, Torres JL, Pérez-JiménezJ, et al.

Involvement of nitric oxide in 3-nitropropionic acid-induced striatal toxicity in rats

Author(s): Deshpande SB, Hida H, Takei-Io N, Masuda T, Baba H, et al.

Glutathione synthesis

Author(s): Lu SC

Cholinergic neuronal defect without cell loss in Huntington’s disease

Author(s): Smith R, Chung H, Rundquist S, Maat-Schieman ML, Colgan L, et al.

Trolox ameliorates 3-nitropropionic acid-induced neurotoxicity in rats

Author(s): Al Mutairy A, Al Kadasah S, Elfaki I,Arshaduddin M, Malik D, et al.