Familial Parkinson's disease: a hint to elucidate the mechanisms of nigral degeneration

Author(s): Hattori N, Kobayashi H, Sasaki-Hatano Y, Sato K, Mizuno Y

Abstract

In the majority of patients with Parkinson's disease (PD), it is now clear that genetic factors contribute to the pathogenesis of PD, although the contribution of genetic and environmental factors remains to be elucidated. The contribution of genetic factors to the pathogenesis of PD is supported by the demonstration of the high concordance in twins, increased risk among relatives of PD patients in case control and family studies, and the existence of familial PD based on single gene defects. Recently, several genes have been mapped and identified in patients with familial PD (FPD). alpha-Synuclein is involved in a rare dominant form of familial PD with dopa responsive parkinsonian features and Lewy body positive pathology. In contrast, parkin is responsible for autosomal recessive form of earlyonset PD with Lewy body-negative pathology. This form is identified with world-wide distribution among patients with young-onset PD. Furthermore, ubiquitin carboxy terminal hydrolase L1 (UCHL1) gene is responsible for an autosomal dominant form of typical PD, although only a single family has so far been identified with a mutation of this gene. In addition, DJ-1 has been identified as a causative gene for PARK7, a recessive form of familial PD. Now, a total of five causative genes including NR4A2 have been identified, and others such as PARK3, -4, -6, -8, -9, -10 have been mapped as hereditary forms of familial PD. The presence of different loci or different causative genes indicates that PD is not a single entity but a highly heterogeneous disorder. However, the functions of causative genes may share a common pathway such as an ubiquitin-proteasome pathway. Thus, identification and elucidation of the causative genes should enhance our understanding of the pathogenesis of not only familial PD, but also sporadic PD.

Similar Articles

Etiology of Parkinson's disease: Genetics and environment revisited

Author(s): Steece-Collier K, Maries E, Kordower JH

Dopamine neuron agenesis in Nurr1-deficient mice

Author(s): Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, et al.

Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neuron

Author(s): Castillo SO, Baffi JS, Palkovits M, Goldstein DS, Kopin IJ, et al.

Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells

Author(s): Hermanson E, Joseph B, Castro D, Lindqvist E, Aarnisalo P, et al.

Transcription factor Nurr1 maintains fiber integrity and nuclearencoded mitochondrial gene expression in dopamine neurons

Author(s): Kadkhodaei B, Alvarsson A, Alvarsson A, Schintu N, Ramskold D, et al.

NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection

Author(s): Volakakis N, Kadkhodaei B, Joodmardi E, Wallis K, Panman L, et al.

A-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons

Author(s): Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, et al.

Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease

Author(s): Oh S, Chang M, Song J, Rhee Y, Joe E, et al.

Association of homozygous 7048G7049 variant in the intron six of Nurr1 gene with Parkinson's disease

Author(s): Xu PY, Liang R, Jankovic J, Hunter C, Zeng YX, et al.

Mutations in NR4A2 associated with familial Parkinson disease

Author(s): Le WD, Xu P, Jankovic J, Jiang H, Appel SH, et al.

Translated mutation in the Nurr1 gene as a cause for Parkinson's disease

Author(s): Grimes DA, Han F, Panisset M, Racacho L, Xiao F, et al.

Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra

Author(s): Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH

NURR1 mutations in cases of schizophrenia and manic-depressive disorder

Author(s): BuervenichS, Carmine A, Arvidsson M, Xiang F, ZhangZ, et al.

Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism

Author(s): Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ

Regulation of GTP cyclohydrolase I expression by orphan receptor Nurr1 in cell culture and in vivo

Author(s): Gil M, McKinney C, Lee MK, Eells JB, Phyillaier MA, et al.

Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons

Author(s): Kadkhodaei B, Ito T, Joodmardi E,Mattsson B, Rouillard C, et al.

Nitric oxide mediates increased susceptibility to dopaminergic damage in Nurr1 heterozygous mice

Author(s): Imam SZ, Jankovic J, Ali SF, Skinner JT, Xie W, et al.

Aging of the striatum: mechanisms and interventions

Author(s): Umegaki H, Roth GS, Ingram DK

Structure and function of the Nur77 subfamily, a unique class of hormone nuclear receptors

Author(s): Eells JB,Witta J,Otridge JB, Zuffova E, Nikodem VM

Age-dependent dopaminergic dysfunction in Nurr1 knockout mice

Author(s): Iang C, Wan X, He Y, Pan T, Jankovic J, et al.

Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated

Author(s): EellJB, Varela-Stokes A, Guo-Ross SX, Kummari E, Smith HM, et al.

Parkinson disease in twins: an etiologic study

Author(s): Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, et al.

No evidence for heritability of Parkinson disease in Swedish twins

Author(s): Wirdefeldt K, Gatz M, Schalling M, Pedersen NL

Heritability of Parkinson disease in Swedish twins: a longitudinal study

Author(s): Wirdefeldt K, Gatz M, Reynolds CA, Prescott CA, Pedersen NL

Decreased ethanol preferences and wheel running in Nurr1-deficient mice

Author(s): Werme M, HermansonE, Carmine A, Buervenich S, Zetterstrom RH, et al.

Schizophrenia-relevant behaviors in a genetic mouse model of constitutive Nurr1 deficiency

Author(s): VuillermotS, JoodmardiE, Perlmann T, Ove Ögren S,FeldonJ, et al.

Otx2 expression is restricted to dopaminergic neurons of the ventral tegmental area in the adult brain

Author(s): DiSalvio M, Di Giovannantonio LG, OmodeiD, AcamporaD, SimeoneA