Increases of kinin B1 and B2 receptors binding sites after brain infusion of amyloid-beta 1-40 peptide in rats

Author(s): Viel TA, Caetano AL, Nasello AG, Lancelotti CL, Nunes VA, et al.

Abstract

Although numerous inflammation pathways have been implicated in Alzheimer's disease, the involvement of the kallikrein-kinin system is still under investigation. We anatomically localized and quantified the density of kinin B(1) and B(2) receptors binding sites in the rat brain after the infusion of amyloid-beta (Abeta) peptide in the right lateral brain ventricle for 5 weeks. The conditioned avoidance test showed a significant reduction of memory consolidation in rats infused with Abeta (68.6+/-20.9%, P<0.05) when compared to control group (90.8+/-4.1%; infused with vehicle). Autoradiographic studies performed in brain samples of both groups using [(125)I]HPP-[des-Arg(10)]-Hoe-140 (150pM, 90min, 25 degrees C) showed a significant increase in density of B(1) receptor binding sites in the ventral hippocampal commissure (1.23+/-0.07fmol/mg), fimbria (1.31+/-0.05fmol/mg), CA1 and CA3 hippocampal areas (1.05+/-0.03 and 1.24+/-0.02fmol/mg, respectively), habenular nuclei (1.30+/-0.04fmol/mg), optical tract (1.30+/-0.05fmol/mg) and internal capsule (1.26+/-0.05fmol/mg) in Abeta group. For B(2) receptors ([(125)I]HPP-Hoe-140, 200pM, 90min, 25 degrees C), a significant increase in density of binding sites was observed in optical tract (2.04+/-0.08fmol/mg), basal nucleus of Meynert (1.84+/-0.18fmol/mg), lateral septal nucleus - dorsal and intermediary portions (1.66+/-0.29fmol/mg), internal capsule (1.74+/-0.19fmol/mg) and habenular nuclei (1.68+/-0.11fmol/mg). In control group, none of these nuclei showed [(125)I]HPP-Hoe-140 labeling. This significant increase in densities of kinin B(1) and B(2) receptors in animals submitted to Abeta infusion was observed mainly in brain regions related to cognitive behavior, suggesting the involvement of the kallikrein-kinin system in Alzheimer's disease in vivo.

Similar Articles

Global recommendations on physical activity for health

Author(s): World Health Organization (WHO)

Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice

Author(s): Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, et al.

Therapeutic action of physical exercise on markers of oxidative stress induced by chronic kidney disease

Author(s): de Souza PS, da Rocha LG, Tromm CB, Scheffer DL, Victor EG, et al.

Change in central kinin B2 receptor density after exercise training in rats

Author(s): Caetano AL, Viel TA, Bittencourt MF, Araujo MS, De Angelis K, et al.

Free radicals and oxidative stress in exercise--immunological aspects

Author(s): Niess AM, Dickhuth HH, Northoff H, Fehrenbach E

Exercise, free radicals and oxidative stress

Author(s): Cooper CE, Vollaard NB, Choueiri T, Wilson MT

Intensity-controlled treadmill running in rats: VO(2 max) and cardiac hypertrophy

Author(s): Wisløff U, Helgerud J, Kemi OJ, Ellingsen O

Molecular pharmacological dissection of short- and long-term memory

Author(s): Izquierdo LA, Barros DM, Vianna MR, Coitinho A, deDavid e Silva T, et al.

Treadmill Running Reverses Cognitive Declines due to Alzheimer Disease

Author(s): Cho J, Shin MK, Kim D, Lee I, Kim S, et al.

Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks

Author(s): Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W