Involvement of nitric oxide in 3-nitropropionic acid-induced striatal toxicity in rats

Author(s): Deshpande SB, Hida H, Takei-Io N, Masuda T, Baba H, et al.

Abstract

The roles of nitric oxide (NO) in 3-nitropropionic acid (3-NPA)-induced toxicity were investigated using in vivo and in vitro models. Chronic 3-NPA administration (10 mg/kg) to rats produced selective striatal lesions that were associated with abnormal motor and EMG activities. In these animals, there was loss of glial fibrillary acidic protein (GFAP)-positive cells with extravasation of IgG in the lesion center, although microtubule-associated protein (MAP)-2-positive cells remained, indicating that astrocytes were involved. 3-NPA increased the NO2−/NO3− levels in microdialysates obtained from the striatum, thalamus and cerebellum. The basal NO3− level was much higher in the striatum than in the other areas. The NO2−/NO3− levels in the striatum were much higher in animals exhibiting abnormal muscular activity. Expression of endothelial NO synthase (eNOS), but not neuronal NOS (nNOS), was greatly increased in the striatum at 5 h after a second 3-NPA exposure, but not in other areas. In astrocyte cultures, the toxic effects of 3-NPA were associated with corresponding increases in the NO2− level, and this toxicity was attenuated by hemoglobin (Hb; 20 μM), which quenches NO. The NO2− generated by 3-NPA, even without cells, was also antagonized by Hb. 3-NPA, S-nitroso-n-acetyl-dl-penicillamine (SNAP) and sodium nitroprusside (SNP) all increased the NO current (detected by NO-sensitive electrodes) in concentration-dependent manners, and Hb significantly attenuated the NO generation induced by 3-NPA, SNAP or SNP. Taken together, these results suggest that 3-NPA generates NO both directly as a donor and indirectly by enhancing NOS expression to produce toxic effects on astrocytes and neuronal toxicity.

Similar Articles

Fish Oil Feeding Up-Regulates the Expression of 5-Aminolevulinate Synthase 2 mRNA in Rat Brain

Author(s): Haraguchi T, Yanaka N, Eguchi Y, Kudo T, Hirata A, et al.

Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice

Author(s): Tian C, Kim YH, Kim YC, Park KT, Kim SW, et al.

Docosahexaenoic acid withstands the Aβ(25-35)-induced neurotoxicity in SH-SY5Y cells

Author(s): Hashimoto M, Katakura M, Hossain S, Rahman A, Shimada T, et al.

Determination of carbonyl content in oxidatively modified proteins

Author(s): Levine RL, Garland D, Oliver CN, Amici A, Climent I, et al.

Catalase in vitro

Author(s): Aebi H

Glutathione transferase from rat testis

Author(s): Guthenberg C, Alin P, Mannervik B

Assays of glutathione peroxidase

Author(s): Flohé L, Günzler WA

A new and rapid colorimetric determination of acetylcholinesterase activity

Author(s): Ellman GL, Courtney KD, Andres V, Feather-Stone RM

Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate

Author(s): Dalpiaz A, Filosa R, de Caprariis P, Conte G, BortolottiF, et al.

Biochemistry of dystrophic muscle

Author(s): Pennington RJ

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randall RJ

Pro- and antioxidant activities of docosahexaenoic acid on human blood platelets

Author(s): Véricel E, Polette A, Bacot S, Calzada C, Lagarde M, et al.

Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics

Author(s): Dalle-Donne I, Scaloni A, Giustarini D,Cavarra E, Tell G, et al.

Protein oxidation and aging

Author(s): Stadtman ER

Reduced protein oxidation in Wistar rats supplemented with marine ω3 PUFAs

Author(s): Méndez L, Pazos M, Gallardo JM, Torres JL, Pérez-JiménezJ, et al.

Glutathione synthesis

Author(s): Lu SC

Cholinergic neuronal defect without cell loss in Huntington’s disease

Author(s): Smith R, Chung H, Rundquist S, Maat-Schieman ML, Colgan L, et al.

Trolox ameliorates 3-nitropropionic acid-induced neurotoxicity in rats

Author(s): Al Mutairy A, Al Kadasah S, Elfaki I,Arshaduddin M, Malik D, et al.