Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling

Author(s): Melief EJ, Miyatake M, Bruchas MR, Chavkin C


Ligand-directed signaling has been suggested as a basis for the differences in responses evoked by otherwise receptor-selective agonists. The underlying mechanisms are not understood, yet clearer definition of this concept may be helpful in the development of novel, pathway-selective therapeutic agents. We previously showed that kappa-opioid receptor activation of JNK by one class of ligand, but not another, caused persistent receptor inactivation. In the current study, we found that the mu-opioid receptor (MOR) could be similarly inactivated by a specific ligand class including the prototypical opioid, morphine. Acute analgesic tolerance to morphine and related opioids (morphine-6-glucuronide and buprenorphine) was blocked by JNK inhibition, but not by G protein receptor kinase 3 knockout. In contrast, a second class of mu-opioids including fentanyl, methadone, and oxycodone produced acute analgesic tolerance that was blocked by G protein receptor kinase 3 knockout, but not by JNK inhibition. Acute MOR desensitization, demonstrated by reduced D-Ala(2)-Met(5)-Glyol-enkephalin-stimulated [(35)S]GTPgammaS binding to spinal cord membranes from morphine-pretreated mice, was also blocked by JNK inhibition; however, desensitization of D-Ala(2)-Met(5)-Glyol-enkephalin-stimulated [(35)S]GTPgammaS binding following fentanyl pretreatment was not blocked by JNK inhibition. JNK-mediated receptor inactivation of the kappa-opioid receptor was evident in both agonist-stimulated [(35)S]GTPgammaS binding and opioid analgesic assays; however, gene knockout of JNK 1 selectively blocked kappa-receptor inactivation, whereas deletion of JNK 2 selectively blocked MOR inactivation. These findings suggest that ligand-directed activation of JNK kinases may generally provides an alternate mode of G protein-coupled receptor regulation.

Similar Articles

Enhanced morphine analgesia in mice lacking beta-arrestin 2

Author(s): Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, et al.

Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence

Author(s): Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG, et al.

Ligand-directed signalling within the opioid receptor family

Author(s): Pradhan AA, Smith ML, Kieffer BL, Evans CJ

μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization

Author(s): McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, et al.

Morphine-like opiates selectively antagonize receptor-arrestin interactions

Author(s): Molinari P, Vezzi V, Sbraccia M, Grò C, Riitano D, et al.

Pharmacological characterization of AR-M1000390 at human delta opioid receptors

Author(s): Marie N, Landemore G, Debout C, Jauzac P, Allouche S

SK-N-BE: a human neuroblastoma cell line containing two subtypes of delta-opioid receptors

Author(s): Polastron J, Mur M, Mazarguil H, Puget A, Meunier JC, et al.

ßarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands

Author(s): Aguila B, Coulbault L, Davis A, Marie N, Hasbi A, et al.

Molecular control of δ-opioid receptor signalling

Author(s): Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, et al.

Development and validation of a genetic algorithm for flexible docking

Author(s): Jones G, Willett P, Glen RC, Leach AR, Taylor R, et al.

Agonist-selective mechanisms of GPCR desensitization

Author(s): Kelly E, Bailey CP, Henderson G

Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone

Author(s): Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT

Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes

Author(s): Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al.