Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids

Author(s): Kidd PM

Abstract

The omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are orthomolecular, conditionally essential nutrients that enhance quality of life and lower the risk of premature death. They function exclusively via cell membranes, in which they are anchored by phospholipid molecules. DHA is proven essential to pre- and postnatal brain development, whereas EPA seems more influential on behavior and mood. Both DHA and EPA generate neuroprotective metabolites. In double-blind, randomized, controlled trials, DHA and EPA combinations have been shown to benefit attention deficit/hyperactivity disorder (AD/HD), autism, dyspraxia, dyslexia, and aggression. For the affective disorders, meta-analyses confirm benefits in major depressive disorder (MDD) and bipolar disorder, with promising results in schizophrenia and initial benefit for borderline personality disorder. Accelerated cognitive decline and mild cognitive impairment (MCI) correlate with lowered tissue levels of DHA/EPA, and supplementation has improved cognitive function. Huntington disease has responded to EPA. Omega-3 phospholipid supplements that combine DHA/EPA and phospholipids into the same molecule have shown marked promise in early clinical trials. Phosphatidylserine with DHA/EPA attached (Omega-3 PS) has been shown to alleviate AD/HD symptoms. Krill omega-3 phospholipids, containing mostly phosphatidylcholine (PC) with DHA/EPA attached, markedly outperformed conventional fish oil DHA/EPA triglycerides in double-blind trials for premenstrual syndrome/dysmenorrhea and for normalizing blood lipid profiles. Krill omega-3 phospholipids demonstrated anti-inflammatory activity, lowering C-reactive protein (CRP) levels in a double-blind trial. Utilizing DHA and EPA together with phospholipids and membrane antioxidants to achieve a triple cell membrane synergy may further diversify their currently wide range of clinical applications.

Similar Articles

Fish Oil Feeding Up-Regulates the Expression of 5-Aminolevulinate Synthase 2 mRNA in Rat Brain

Author(s): Haraguchi T, Yanaka N, Eguchi Y, Kudo T, Hirata A, et al.

Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice

Author(s): Tian C, Kim YH, Kim YC, Park KT, Kim SW, et al.

Docosahexaenoic acid withstands the Aβ(25-35)-induced neurotoxicity in SH-SY5Y cells

Author(s): Hashimoto M, Katakura M, Hossain S, Rahman A, Shimada T, et al.

Determination of carbonyl content in oxidatively modified proteins

Author(s): Levine RL, Garland D, Oliver CN, Amici A, Climent I, et al.

Catalase in vitro

Author(s): Aebi H

Glutathione transferase from rat testis

Author(s): Guthenberg C, Alin P, Mannervik B

Assays of glutathione peroxidase

Author(s): Flohé L, Günzler WA

A new and rapid colorimetric determination of acetylcholinesterase activity

Author(s): Ellman GL, Courtney KD, Andres V, Feather-Stone RM

Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate

Author(s): Dalpiaz A, Filosa R, de Caprariis P, Conte G, BortolottiF, et al.

Biochemistry of dystrophic muscle

Author(s): Pennington RJ

Protein measurement with the Folin phenol reagent

Author(s): Lowry OH, Rosebrough NJ, Farr AL, Randall RJ

Pro- and antioxidant activities of docosahexaenoic acid on human blood platelets

Author(s): Véricel E, Polette A, Bacot S, Calzada C, Lagarde M, et al.

Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics

Author(s): Dalle-Donne I, Scaloni A, Giustarini D,Cavarra E, Tell G, et al.

Protein oxidation and aging

Author(s): Stadtman ER

Reduced protein oxidation in Wistar rats supplemented with marine ω3 PUFAs

Author(s): Méndez L, Pazos M, Gallardo JM, Torres JL, Pérez-JiménezJ, et al.

Involvement of nitric oxide in 3-nitropropionic acid-induced striatal toxicity in rats

Author(s): Deshpande SB, Hida H, Takei-Io N, Masuda T, Baba H, et al.

Glutathione synthesis

Author(s): Lu SC

Cholinergic neuronal defect without cell loss in Huntington’s disease

Author(s): Smith R, Chung H, Rundquist S, Maat-Schieman ML, Colgan L, et al.

Trolox ameliorates 3-nitropropionic acid-induced neurotoxicity in rats

Author(s): Al Mutairy A, Al Kadasah S, Elfaki I,Arshaduddin M, Malik D, et al.