μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization

Author(s): McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, et al.

Abstract

We have compared the ability of a number of μ-opioid receptor (MOPr) ligands to activate G proteins with their abilities to induce MOPr phosphorylation, to promote association of arrestin-3 and to cause MOPr internalization. For a model of G protein-coupled receptor (GPCR) activation where all agonists stabilize a single active conformation of the receptor, a close correlation between signaling outputs might be expected. Our results show that overall there is a very good correlation between efficacy for G protein activation and arrestin-3 recruitment, whereas a few agonists, in particular endomorphins 1 and 2, display apparent bias toward arrestin recruitment. The agonist-induced phosphorylation of MOPr at Ser(375), considered a key step in MOPr regulation, and agonist-induced internalization of MOPr were each found to correlate well with arrestin-3 recruitment. These data indicate that for the majority of MOPr agonists the ability to induce receptor phosphorylation, arrestin-3 recruitment, and internalization can be predicted from their ability as agonists to activate G proteins. For the prototypic MOPr agonist morphine, its relatively weak ability to induce MOPr internalization can be explained by its low agonist efficacy.

Similar Articles

Enhanced morphine analgesia in mice lacking beta-arrestin 2

Author(s): Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, et al.

Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence

Author(s): Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG, et al.

Ligand-directed signalling within the opioid receptor family

Author(s): Pradhan AA, Smith ML, Kieffer BL, Evans CJ

Morphine-like opiates selectively antagonize receptor-arrestin interactions

Author(s): Molinari P, Vezzi V, Sbraccia M, Grò C, Riitano D, et al.

Pharmacological characterization of AR-M1000390 at human delta opioid receptors

Author(s): Marie N, Landemore G, Debout C, Jauzac P, Allouche S

SK-N-BE: a human neuroblastoma cell line containing two subtypes of delta-opioid receptors

Author(s): Polastron J, Mur M, Mazarguil H, Puget A, Meunier JC, et al.

ßarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands

Author(s): Aguila B, Coulbault L, Davis A, Marie N, Hasbi A, et al.

Molecular control of δ-opioid receptor signalling

Author(s): Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, et al.

Development and validation of a genetic algorithm for flexible docking

Author(s): Jones G, Willett P, Glen RC, Leach AR, Taylor R, et al.

Agonist-selective mechanisms of GPCR desensitization

Author(s): Kelly E, Bailey CP, Henderson G

Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone

Author(s): Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT

Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes

Author(s): Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al.