Pharmacological delta1- and delta2-opioid receptor subtypes in the human neuroblastoma cell line SK-N-BE: no evidence for distinct molecular entities

Author(s): Allouche S, Hasbi A, Ferey V, Sola B, Jauzac P, et al.

Abstract

The two pharmacological delta-opioid receptor subtypes, delta1 and delta2, have been defined on the basis of pharmacological tools but remain to be characterized at the molecular level, since only a single cDNA has been cloned. The present study aimed to investigate the pharmacological properties of delta1- and delta2-opioid subtypes expressed in the human neuroblastoma cell line SK-N-BE and to characterize their putative corresponding mRNAs. Binding experiments using "selective" delta1- and delta2-opioid agonists and antagonists revealed the presence of two binding sites, demonstrating the presence of these delta1-opioid subtypes as they were previously described. The activation of these pharmacological subtypes by the selective agonists induced the incorporation of [alpha-(32)P]azidoanilide-GTP into Galpha(i2)/Galpha(0) subunits with the same efficiency and potency and inhibited adenosine 3', 5'-cyclic monophosphate (cAMP) accumulation with similar efficiency, while their sustained activation for 15 min induced a cross-desensitization. The "selective" delta1 and delta2 antagonists, 7-benzylidenenaltrexone and naltrindole benzofuran, respectively, were found to be as potent in blocking the inhibition of cAMP accumulation induced by both [D-Pen(2,5)]enkephalin and Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH(2). The possibility that delta-opioid subtypes could arise from alternative splicing was ruled out by reverse transcription-polymerase chain reaction (RT-PCR) experiments and the sequencing of PCR products, which revealed the presence of a single transcript encoding for the delta-opioid receptor. Different possibilities which could account for the delta-opioid receptor heterogeneity observed in the SN-N-BE cell line are discussed.

Similar Articles

Enhanced morphine analgesia in mice lacking beta-arrestin 2

Author(s): Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, et al.

Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence

Author(s): Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG, et al.

Ligand-directed signalling within the opioid receptor family

Author(s): Pradhan AA, Smith ML, Kieffer BL, Evans CJ

μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization

Author(s): McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, et al.

Morphine-like opiates selectively antagonize receptor-arrestin interactions

Author(s): Molinari P, Vezzi V, Sbraccia M, Grò C, Riitano D, et al.

Pharmacological characterization of AR-M1000390 at human delta opioid receptors

Author(s): Marie N, Landemore G, Debout C, Jauzac P, Allouche S

SK-N-BE: a human neuroblastoma cell line containing two subtypes of delta-opioid receptors

Author(s): Polastron J, Mur M, Mazarguil H, Puget A, Meunier JC, et al.

ßarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands

Author(s): Aguila B, Coulbault L, Davis A, Marie N, Hasbi A, et al.

Molecular control of δ-opioid receptor signalling

Author(s): Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, et al.

Development and validation of a genetic algorithm for flexible docking

Author(s): Jones G, Willett P, Glen RC, Leach AR, Taylor R, et al.

Agonist-selective mechanisms of GPCR desensitization

Author(s): Kelly E, Bailey CP, Henderson G

Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone

Author(s): Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT

Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes

Author(s): Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, et al.